

Table of Contents

ACRONYMS AN	D ABI	BREVIA	TIONS	xvi
EXECUTIVE SUN	/IMAF	RY		1
	ES.1	Introd	uction	1
		ES.1.1	Purpose of this Report	2
		ES.1.2	Klamath Basin Background	3
		ES.1.3	The KSHA and KBRA	4
	ES.2		am Removal and KBRA Implementation Advance Restoration of nid and Other Fisheries of the Klamath Basin Over a 50-Year Time	
		Frame	?	6
		ES.2.1	Short-Term Effects of Dam Removal	7
		ES.2.2	Long-Term Effects of Dam Removal	9
	ES.3		Would Dam Removal Entail, What Mitigation Measures May Be d, and What Would These Actions Cost?	13
		ES.3.1	Mitigation Measures	15
		ES.3.2	Estimated Dam Removal Costs	15
	ES.4		Are the Major Potential Risks and Uncertainties Associated with Dam	17
		ES.4.1	Effects to Aquatic Species and Fisheries from Extended Downstream Sediment Transport	17
		ES.4.2	Cost Exceedence to a Federal DRE	17
		ES.4.3	Short-term Flooding	18
		ES.4.4	Cultural and Historic Resources	18
	ES.5		ities Removal in the Public Interest, Which Includes, But is Not Limited is ideration of Potential Effects on Local Communities and Tribes?	19
		ES.5.1	Summary of Effects to National Economic Development (NED)	19
		ES.5.2	Summary of Effects to Regional Economics (RED)	23
		EC E 2	Tribal	27

		ES.5.4	and Public Utility Commission Rulings	28
	ES.6	Other	Social and Environmental Effects from Dam Removal	
SECTION 1			ION	
	1.1	Purpos	se and Scope of this Report	34
	1.2	Backgı	round	35
		1.2.1	Hydrologic Setting	36
		1.2.2	Historical Changes	37
		1.2.3	Existing Biological and Physical Conditions	38
		1.2.4	Regulatory Conditions	39
		1.2.5	Conditions Leading to the Development of the KHSA	40
		1.2.6	Public Utilities Commission Rulings on the KHSA	42
		1.2.7	Klamath Basin Restoration Agreement (KBRA)	43
		1.2.8	Summary and Path Forward	45
SECTION 2	TECH	INICAL I	NPUT AND PUBLIC OUTREACH PROCESSES	47
	2.1	Stakeh	nolders and the Public	47
	2.2	Indian	Tribes	47
	2.3	Techni	ical Coordination Committee	48
SECTION 3	DAT	A COLLE	CTION PROCESS	51
	3.1	Techni	ical Management Team	51
	3.2	Guida	nce on Scientific Integrity and Review Process	53
		3.2.1	Scientific Review	53
	3.3	List of	Technical Studies Developed for the Secretarial Determination Process	56
SECTION 4	SECF	RETARIA	L DETERMINATION FINDINGS OF TECHNICAL STUDIES	59
	4.1	Expect	ted Effects of Dam Removal and KBRA on Physical, Chemical, and	
		Biolog	ical Processes That Support Salmonid and Other Fish Populations	
		4.1.1	Fish Population Factors Affected by Dam Removal and KBRA	
		4.1.2	Species-Specific Effects	
		4.1.3	Short Term Effects on Fisheries from Dam Removal	93
		4.1.4	Summary of Effects on Fisheries and Fish Species	101
	4.2		temoval Detailed Plan and Estimated Cost	
		4.2.1	Dam Removal Engineering and Construction	
		4.2.2	Summary of Costs	127

	4.3	Risks a	nd Uncertainties of Dam Removal	129
		4.3.1	Affects to Aquatic Species and Fisheries from Extended Downstream Sediment Transport	129
		4.3.2	Cost Exceedence to a Federal DRE	130
		4.3.3	Short-term Flooding	131
		4.3.4	Cultural and Historic Resources	133
	4.4	Analys	is of Information to Inform a Decision on Whether Dam Removal and	
		KBRA a	are in the Public Interest	135
		4.4.1	Economic Analysis	135
		4.4.2	Tribal	199
		4.4.3	Prehistoric and Historic Cultural Resources	219
		4.4.4	Previous Analyses of Relicensing versus Removal of the Four Facilities – Implications for PacifiCorp Customers and Public Utilities Commission Rulings	221
		4.4.5	Wild and Scenic River	227
		4.4.6	Recreation	231
		4.4.7	Real Estate	239
		4.4.8	Refuges	243
		4.4.9	Chemicals in Reservoir Sediments	247
		4.4.10	Algal Toxins	253
		4.4.11	Greenhouse Gases	257
		4.4.12	Societal Views on Dam Removal and the KBRA	261
SECTION 5	SUN	1MARY A	AND FINDINGS	267
	5.1		am Removal and KBRA Advance Restoration of Salmonid and Other es of the Klamath Basin Over a 50 Year Time Frame?	268
	5.2		Would Dam Removal Entail, What Mitigation Measures May Be d, and What Would These Actions Cost?	272
	5.3		are the Major Potential Risks and Uncertaintities Associated With Dam	275
	5.4		ities Removal in the Public Interest, Which Includes But is not Limited sideration of Potential Impacts on Affected Local Communities and	
		Tribes	?	277
SECTION 6	REFI	ERENCES		291

LIST OF TABLES

ES-1	Four Questions of the Secretarial Determination	2
ES-2	Declines in Klamath River Anadromous Fish	3
ES-3	General Information on the Four Facilities on the Klamath River	5
ES-4	Major Long-Term Benefits for Salmonid Restoration from Dam Removal and Implementation of the KBRA	
ES-5	Benefits to Other Fish Species from Dam Removal and KBRA Implementation	12
ES-6	Dam Removal Mitigation Measures	15
ES-7	Summary of Costs for Full Removal of all Four Facilities	16
ES-8	Summary of Costs for Partial Removal of all Four Facilities	16
ES-9	Total Net Benefits and Costs Summary for Dam Removal and Implementation of the KBRA	22
ES-10	Benefit Cost Analysis Summary for Dam Removal and Implementation of the KBRA	23
ES-11	Average Annual Change in Jobs (Full Time, Part Time, or Temporary), Regional Labor, Income, and Regional Output for Dam Removal and Implementation of the KBRA (by Region, Activity, and Timeframe)	25
ES-12	Common Benefits to all Indian Tribes with Dam Removal and Implementation of the KBRA	27
ES-13	Operations, Costs, Risks, and Liabilities for FERC Relicensing and Removal of the Four Facilities, Based on PacifiCorp Analyses	29
ES-14	Summary of Other Social and Environmental Effects of Dam Removal and KBRA Implementation	30
1-1	List of Major KBRA Programs, Plans, and Commitments	44
2-1	Partial List of Coordination Meetings with the TCC, Stakeholders, Tribes, and Public	48
3-1	List of Studies and Reports Developed or Reviewed for the Secretarial Determination Overview Report	57
4-1	Organization of Chapter 4 of the Overview Report	60
4.1-1	Declines in Klamath River Anadromous Fish	61
4.1-2	Projected Increases in Average Annual Air Temperature	68
4.1-3	Projected Seasonal and Annual Changes in Precipitation	69
4.1-4	Estimated groundwater discharge (springs) into upper Klamath River systems	73
4.1-5	Summary of Model Predictions for SSCs in the Klamath River Downstream of Iron Gate Dam	96
4.2-1	General information of Four Facilities on the Klamath River	104
4.2-2	Partial Removal of J.C. Boyle Dam	105
4.2-3	Existing Recreational Facilities Adjacent to J.C. Boyle Reservoir	106
4.2-4	Estimated Costs for the Full Removal of J.C. Boyle Dam	109
4.2-5	Estimated Costs for the Partial Removal of J.C. Boyle Dam	109
4 2-6	Partial Removal of Conco 1 Dam	111

4.2-7	Existing Recreational Facilities Adjacent to Copco 1 Reservoir	112
4.2-8	Estimated Costs for the Full Removal of Copco 1 Dam	114
4.2-9	Estimated Costs for the Partial Removal of Copco 1 Dam	114
4.2-10	Partial Removal of Copco 2 Dam	116
4.2-11	Estimated Costs for the Full Removal of Copco 2 Dam	117
4.2-12	Estimated Costs for the Partial Removal of Copco 2 Dam	118
4.2-13	Partial Removal of Iron Gate Dam	119
4.2-14	Existing Recreational Facilities Adjacent to Iron Gate Reservoir	120
4.2-15	Estimated Costs for the Full Removal of Iron Gate Dam	124
4.2-16	Estimated Costs for the Partial Removal of Iron Gate Dam	125
4.2-17	Estimated Costs for the Modification of the Yreka Pipeline	126
4.2-18	Summary of Costs for Full Removal of the Four Facilities	127
4.2-19	Summary of Costs for Partial Removal of the Four Facilities	128
4.4.1-1	Annual and Total Discounted Net Economic Value of the Chinook Troll Fishery (all stocks) Under Dams Out with KBRA and Dams In, by Management Area	140
4.4.1-2	Annual and Total Discounted Net Economic Value of the Ocean Recreational Chinook Fishery (all stocks) Under Dams Out with KBRA and Dams In, by Management Area	144
4.4.1-3	Total Discounted Economic Value of Irrigated Agriculture Under Dams Out with KBRA and Dams In	145
4.4.1-4	Total Discounted Net Economic Value of Refuge Recreation Under Dams Out with KBRA and Dams In	146
4.4.1-5	Klamath Survey Response Rates	148
4.4.1-6	Survey Results Regarding Respondents' Use of Their Local Rivers	149
4.4.1-7	Survey Results Regarding Respondents' Concern for Species in Klamath Basin	150
4.4.1-8	Respondents' Opinions Regarding Klamath River Basin Dam Removal Plans	151
4.4.1-9	Vote on Action Plan Scenarios, by Sample Area	152
4.4.1-10	Vote by Annual Cost of Plan to Household	152
4.4.1-11	Extent of Respondents' Agreement with Statements Regarding the Survey and the Choices Provided in the Survey	153
4.4.1-12	Average Household Annual WTP Values with 95% Confidence Interval	154
4.4.1-13	Aggregate Present Value of Household WTP Over 20 Years, with 95% Confidence Interval	156
4.4.1-14	Agency Base Funding and KBRA Program Costs	157
4.4.1-15	Full Four Facilities Removal and Total Site Mitigation Costs for Full Facilities Removal	158
4.4.1-16	Partial Four Facilities Removal and Total Site Mitigation Costs for Partial Facilities Removal	158
4.4.1-17	Average Annual and Total Discounted Value OM&R Costs	159

4.4.1-18	Total Discounted Value of Forgone Hydropower Economic Benefits of Dams Out Relative to Dams In	160
4.4.1-19	Total Discounted Value of Forgone Whitewater Boating Benefits of Dams Out Relative to Dams In	161
4.4.1-20	Effects of Dam Removal and KBRA on Tribal Harvest Opportunities, by Geographic Area	165
4.4.1-21	Effects of Dam Removal and KBRA on Standard of Living and Engagement in Resource Stewardship, by Tribe	166
4.4.1-22	Estimated benefit-cost comparison of proposed scenarios	170
4.4.1-23	Regional Economic Impacts from Dam Decommissioning Expenditures with Facilities Removal Relative to the Dams In	175
4.4.1-24	Annual Ex-Vessel Revenue for Most Impacted Management Areas with Dams Out Relative to the Dams In	175
4.4.1-25	Annual Regional Economic Impacts from Commercial Fishing with Facilities out Removal and KBRA Relative to the Dams In	176
4.4.1-26	Annual Regional Economic Impacts from Reservoir Recreation with Facilities Removal Relative to the Dams In	177
4.4.1-27	Annual Regional Economic Impacts from Ocean Sport Salmon Fishing with Facilities Removal Relative to the Dams In	178
4.4.1-28	Annual Regional Economic Impacts from In-River Sport Salmon Fishing with Facilities Removal Relative to the Dams In	179
4.4.1-29	Annual Regional Economic Impacts from Whitewater Boating with Facilities Removal Relative to the Dams In	180
4.4.1-30	Regional Economic Impacts of KBRA Fishery Program Actions Relative to Base Funding Over a 15-year period	182
4.4.1-31	Regional Economic Impacts of KBRA Water Resource Program Actions Relative to Base Funding over a 15-year period	184
4.4.1-32	Gross Farm Revenue by IMPLAN Crop Sectors Between the Dams In and Dam Out with KBRA for Drought Years	185
4.4.1-33	Regional Economic Impacts from Gross Farm Revenue between Dams In and Dams Out with KBRA for Drought Years	186
4.4.1-34	Regional Economic Development Impact Analysis Summary Table	190
4.4.1-35	KBRA Program Regional Economic Development Impact Analysis Summary Table	196
4.4.2-1	Effects of the Current Conditions and Projected Changes with KHSA and KBRA Implementation Common to all Tribes	203
4.4.2-2	Effects of the Current Conditions and Projected Changes with KHSA and KBRA Implementation Common to all Tribes	205
4.4.4-1	Operations, costs, risks, and liabilities for FERC relicensing and for removal of the Four Facilities, Based on PacifiCorp analyses	224

4.4.5-1	Changes Expected to WSR Resources as a Result of Dam Removal	230
4.4.6-1	Comparison of Klamath Hydroelectric Project Reservoirs and Regional Low and Moderate Visitor Use In Reservoirs and Lakes Providing Comparable Recreational Opportunities	
4.4.6-2	Recreation Facilities Removed as Part of Dam Removal	232
4.4.6-3	Estimated Change in Number of Days Meeting the Range of Acceptable Flows for Recreational Activities on Klamath River Reaches	234
4.4.6-4	Regional Rivers with Whitewater Boating Opportunities	236
4.4.6-5	Expected Changes to Recreational Resources as a Result of Dam Removal	238
4.4.7-1	Land Use Designations of Privately Owned Parcels around Copco 1 and Iron Gate Reservoirs	240
4.4.12-1	Klamath Nonuse Value Survey Response Rates	262
5-1	Long-Term Benefits for Salmonid Restoration from Dam Removal and KBRA Implementation	269
5-2	Benefits to Other Fish Species from Dam Removal and KBRA Implementation	272
5-3	Dam Removal Mitigation Measures	273
5-4	Summary of Costs for Full Removal of all Four Facilities	274
5-5	Summary of Costs for Partial Removal of all Four Facilities	274
5-6	Total Net Benefits and Costs Summary for Dam Removal and Implementation of the KBRA	279
5-7	Benefit Cost Analysis Summary for Dam Removal and Implementation of the KBRA	281
5-8	Average Annual Change in Jobs (Full Time, Part Time, or Temporary), Labor income, and Output for Dam Removal and KBRA Implementation (by Region, Activity, and Timeframe)	
5-9	Common Benefits to all Indian Tribes with Dam Removal and Implementation of the KBRA	285
5-10	Operations, Costs, Risks, and Liabilities for FERC Relicensing and Removal of the Four Facilities, Based on PacifiCorp Analyses	286
5-11	Summary of Other Social and Environmental Effects of Dam Removal and KBRA Implementation	287
LIST OF FIGU	JRES	
ES-1	Klamath River Basin Map. The Klamath Basin covers over 12,000 square miles and includes PacifiCorp's J.C. Boyle, Copco 1, Copco 2, and Iron Gate dams on the main stem of the Klamath River	1
ES-2	Thousands of adult salmon died in the lower Klamath River during September 2002. Causative factors included low flows, high concentration of returning Chinook salmon, warm water temperatures, and disease	2
ES-3	J.C. Boyle Dam and Powerhouse	5
ES-4	Copco 1 Dam and Reservoir	5
ES-5	Copco 2 Dam and Downstream Powerhouse	6
FS-6	Iron Gate Dam and Powerhouse	۴

ES-7	Modeled suspended sediment concentrations (SSC) immediately downstream of Iron Gate Dam for dam removal in dry, median, and wet water years. Background concentrations are modeled using data from all water year types for 1961–2008.
ES-8	Estimated mortality impacts on basin-wide production (number of adults or juveniles) resulting from dam removal for key salmonid species for both median (most likely) and low flow (worst case) water years.
ES-9	Timeline depicting the timing of migratory fish lifecycles in the mainstem of the Klamath River coinciding with dam removal plans.
ES-10	Increased salmon and steelhead distribution in Klamath Basin under current conditions (with dams) compared to historical conditions (without dams)
ES-11	Modeled water temperatures during the fall Chinook salmon migration period for the Klamath River indicate that future (2020–2061) water temperatures will be 1–3°C greater than historical (1961–2009) temperatures due to climate change. Dam removal would decrease summer and fall temperatures downstream of Iron Gate Dam, with diminishing effects further downstream. Water temperatures in the Keno Reach would not be affected by dam removal. Simplified patterns from Perry et al. (2011) use standard "GFDL" Global Climate Model output
ES-12	Fish diseases are widespread in the mainstem of the Klamath River during certain time periods and in certain years and have been shown to adversely affect freshwater abundance of Chinook and coho salmon, which are an intermediate host to one prevalent Klamath River fish disease caused by the myxozoan C. Shasta. Habitat conditions which support C. Shasta and its polychaete host caused by the dams include: stable river flows; relatively stable streambed; crowding of adult salmon at barriers to fish passage; and plankton-rich discharge from reservoirs
ES-13	Chart of the median monthly flows in the Klamath River at specific USGS gages. Reservoir drawdown is planned to occur from January through March 15 (2020), coinciding with typically high flows in the Klamath River
ES-14	Partial removal of J.C. Boyle Dam would include removal of embankment dam and fish ladder, providing a free flowing river and allowing full volitional fish passage. However, certain structures, including the steel pipeline and supports, would be retained
ES-15	Partial removal of Copco 1 Dam would include removal of the concrete dam, providing a free flowing river and allowing full volitional fish passage. Certain structures, including the penstocks and powerhouse, would be retained1
ES-16	Partial removal of Copco 2 Dam would include removal of spillway gates, providing a free flowing river and allowing full volitional fish passage. Certain structures, including the water intake and embankments, would be retained.
ES-17	Partial removal of Iron Gate Dam would include removal of embankment dam, providing a free flowing river and allowing full volitional fish passage. Certain structures, including the spillway and powerhouse, would be retained1
ES-18	On the Lower Klamath NWR, the fall carrying capacity for dabbling and diving ducks (migratory waterfowl) would be greater with dam removal and implementation of the KBRA in both wet and dry years although the difference is more pronounced in dry years20

ES-19	Jobs and Regional Economic Output would increase in all of the five Commercial Fishing Management Areas with Dam Removal	23
ES-20	Dense summer and fall blue-green algae (Cyanobacteria) blooms in Iron Gate Reservoir produce toxic microcystin resulting in poor water quality for fish and public health posting by the State of California. Known and/or perceived concerns over health risks associated with seasonal algal toxins have resulted in the alteration of traditional cultural practices, such as gathering and preparation of basket materials and plants, fishing, ceremonial bathing, and ingestion of river water	27
1-1	Klamath River basin map. J.C. Boyle, Copco 1, Copco 2, and Iron Gate dams would be removed under the KHSA.	33
1-2	The Klamath River is a unique river system with a flat topography as its headwater with a steeper downstream portion beginning near the dams. In addition the basin receives widely varying precipitation.	36
1-3	Klamath Basin wetland acreage over time (1905-2011).	37
1-4	Copco 1 Dam, powerhouse, and downstream area of the Klamath River. This facility would be removed under the KHSA	40
1-5	The Copco 2 powerhouse. The CPUC approved the rate increases that capped rate payer exposure at \$200 million (in 2020 dollars) as defined in the KHSA.	42
1-6	Agriculture is one of the many resources in the Klamath Basin that would benefit from more water delivery certainty with the implementation of the KHSA and KBRA.	45
2-1	Coordination for the Secretarial Determination process as outlined in the KHSA among the TMT and the tribes, stakeholders, and public.	47
2-2	Public meetings were frequently held throughout the basin to inform stakeholders and public groups on the progress of the project.	48
3-1	The <u>Sediment Chemistry Investigation</u> : <u>Sampling, Analysis, and Quality Assurance Findings for Klamath River Reservoirs and Estuary, October 2009-Janurary 2010</u> (Reclamation 2011n) was one of the many peer reviewed reports developed for the Secretarial Determination. Two independent experts in reservoir sediment chemistry reviewed the report. These reviewers were not associated with the TMT or the Klamath Basin. The comments were forwarded to the TMT authors without modification, and the authors responded to these reviews independently	55
4.1-1	Wild (naturally spawning) Chinook salmon in the Klamath Basin are in decline.	61
4.1-2	Coho salmon in the Klamath Basin are threatened with extinction.	62
4.1-3	Summer and winter steelhead in the Klamath Basin are in decline.	62
4.1-4	Increased salmon and steelhead distribution in the Klamath Basin under current conditions (with dams) compared to historical conditions (prior to dam construction)	63
4.1-5	Historical water deliveries to Reclamation's Klamath Project relative to the maximum water allocation that would be provided under the terms of the KBRA.	64
4.1-6	USGS graph of flows below Iron Gate Dam (July 1, 2009 through June 30, 2010). Flows below Iron Gate Dam typically do not vary from day to day or month to month, particularly during dry periods	65

4.1-7	Climate change projections indicate that by the end of the 21st century, more precipitation will fall as rain than snow throughout northern California and the Pacific Northwest, affecting seasonal hydrology in the Klamath River Basin	67
4.1-8	Wildfire incidence in the Klamath Basin will increase under climate change	68
4.1-9	Simulated annual precipitation and temperature averaged over Klamath River subbasins	70
4.1-10	Re-vegetation projects under KBRA would help to replace large woody debris in riparian zones, improving fish habitat and ecosystem resilience to climate change	71
4.1-11	Map of the Klamath River indicating the rivermile markers.	72
4.1-12	Dam removal would increase available rearing habitat upstream of Iron Gate Dam including area like this, in the Wood River upstream of Upper Klamath Lake	72
4.1-13	Dam removal would also provide access to cold water tributaries upstream of the Four Facilities (Tecumseh Springs).	73
4.1-14	Removing J.C. Boyle Dam would increase summer water temperatures in the 4-mile reach just downstream of J.C. Boyle Dam, but it would not affect groundwater springs that would continue to serve as refuge habitat for coldwater fish.	75
4.1-15	Modeled water temperatures during the fall Chinook salmon migration period for the Klamath River indicate that future (2020–2061) water temperatures will be 1–3°C greater than historical (1961–2009) temperatures due to climate change. Dam removal and KBRA implementation would decrease summer and fall temperatures downstream of Iron Gate Dam, with diminishing effects further downstream. Water temperatures in the Keno Reach would not be affected by dam removal. Simplified patterns from Perry et al. (2011) use standard "GFDL" Global Climate Model output.	76
4.1-16	Schematic of general nutrient Inputs, internal loading, and algal growth in Upper Klamath Lake. As the lake is relatively shallow (mean depth = 8 feet at mean summer elevation [Wood et. al. 1996]), seasonal separation of warmer surface waters from colder bottom waters (thermal stratification) is typically intermittent.	77
4.1-17	Total phosphorus and total nitrogen concentrations tend to decrease from upstream to downstream in the Klamath River, with the most pronounced peaks occurring downstream of Keno Dam during summer and fall months. Simplified spatial and temporal patterns illustrate generalized trends reported for 2001-2005 in Asarian et al. (2010).	78
4.1-18	Summertime blooms of cyanobacteria (blue-green algae) can produce toxins that bioaccumulate in aquatic biota	79
4.1-19	Optimum levels of dissolved oxygen for fish range from 8 to 10 mg/L.	80
4.1-20	The relatively deep Copco 1 Reservoir experiences thermal stratification and results in low dissolved oxygen (from less than 1 mg/L to 5 mg/L) in reservoir bottom waters during summer and fall months. This poor water quality affects the Klamath River downstream of Copco 1 Dam	81
4.1-21	With dam removal, dissolved oxygen in the Klamath River downstream of Iron Gate Dam would consistently achieve North Coast Basin Plan percent saturation objectives and would be greater than dissolved oxygen under existing conditions from April through November. Dam removal may also result in greater variability in dissolved oxygen during June through October due to	

	photosynthesis and respiration of attached algae (periphyton) that establish in the free-flowing river. Lines represent simplified TMDL model output of hourly values from NCRWQCB	82
4.1-22	Salmon are an intermediate host within the myxozoan life cycle	.83
4.1-23	Thousands of adult salmon in the lower Klamath River died during 2002. Causative factors were low September flows, high concentration of returning Chinook salmon, warm water temperatures, and disease	84
4.1-24	Chinook salmon would benefit from the increase in habitat and improved water quality as a result of the removal of the Four Facilities	85
4.1-25	EDRRA Chinook salmon model results showing the relative percent increase in annual median escapement provided under the Dam Removal and Implementation of KBRA scenario versus the dams remain scenario in the absence of hatcheries for the years immediately following dam removal (2021 to 2061).	86
4.1-26	Coho salmon are expected to recolonize upstream habitat with the removal of the Four Facilities	87
4.1-27	With dam removal steelhead trout would have increased habitat to spawn	.88
4.1-28	Pacific Lamprey Expert Panel (Close et al. 2011) predicts increased carrying capacity for Pacific lamprey with dam removal	89
4.1-29	Habitat for the green sturgeon, a species of concern, would improve in the Klamath River with the removal of the Four Facilities.	90
4.1-30	Stranded fish and macroinvertebrates in the J.C. Boyle Peaking Reach.	.90
4.1-31	Redband trout, a native species in the Klamath River, would benefit from the a free-flowing river with dam removal	91
4.1-32	Both Lost River (below) and shortnose suckers are endangered species that would likely benefit from KBRA habitat and water-quality improvements in the upper Klamath Basin	92
4.1-33	Modeled suspended sediment concentrations immediately downstream of Iron Gate Dam for dam removal in dry, median and wet water years. Background concentrations are modeled using data from all water year types for 1961–2008.	93
4.1-34	Modeled suspended sediment concentrations at Klamath, CA (river mouth) for dam removal in dry, median and wet water years. Background concentrations are modeled using data from all water year types for 1961–2008	93
4.1-35	Timeline depicting the timing of salmon lifecycles in the mainstem of the Klamath River coinciding with dam removal plans	95
4.1-36	Estimated mortality impacts on basin-wide production (number of adults or juveniles) resulting from dam removal for key salmonid species (Stillwater Sciences 2011a) for both median (most likely) and low flow (worst case) water years.	96
4.1-37	Comparison of Suspended Sediment Concentrations at Iron Gate Dam With and without Sediment Dredging.	98
4.1-38	Comparison of Estimated Fish Mortality Impacts With and Without Sediment Dredging	.98
4.1-39	Fish rescue locations to mitigate for potential impacts from sediment release with dam removal	100

4.1-40	Fish rescue operations would include out-migrant traps such as these two operating in the Shasta River	100
4.2-1	Chart of the median daily flows in the Klamath River at specific USGS gages. Reservoir drawdown and is planned to occur from January through March 15 (2020), coinciding with typically high flows in the Klamath River	103
4.2-2	Photos of J.C. Boyle Dam and Reservoir with specific components labeled. With full facilities removal, all visible components would be removed. With partial facilities removal, certain components (e.g., steel conveyance pipe) would be retained.	104
4.2-3	Partial removal would provide a free flowing river and allow full volitional fish passage. However, certain structures would be retained	105
4.2-4	Potential locations for revegetation in J.C. Boyle Reservoir. Revegetation efforts would be focused as shown below.	106
4.2-5	Photo of Copco 1 Dam and Reservoir with specific components labeled. With full facilities removal, all visible components would be removed. With partial facilities removal, certain components (e.g., penstock) would be retained.	110
4.2-6	Partial removal would provide a free flowing river and allow full volitional fish passage. However, certain structures would be retained	111
4.2-7	Potential locations for revegetation in Copco 1 Reservoir. Revegetation efforts would be focused as shown below	112
4.2-8	Photo of Copco 2 Dam and Reservoir with Specific Components Labeled. With full facilities removal, all visible components would be removed. With partial facilities removal, certain components (e.g., penstock) would be retained.	115
4.2-9	Partial Removal Would Provide a Free Flowing River and Allow Full Volitional Fish Passage. However, certain structures would be retained	116
4.2-10	Photo of Iron Gate Dam and Reservoir with Specific Components Labeled. With full facilities removal, all visible components would be removed. With partial facilities removal, certain components (e.g., penstock) would be retained.	118
4.2-11	Partial removal would provide a free flowing river and allow full volitional fish passage. However, certain structures would be retained or retained and buried	119
4.2-12	Potential locations for revegetation in Iron Gate Reservoir. Revegetation efforts would be focused as shown below.	120
4.2-13	The 100-year floodplain could change between RM 190 and 172 due to dam removal, with no discernable effects below RM 172	121
4.2-14	Hydrographs immediately below Iron Gate Dam for a 100-years flood event with and without removal of the Four Facilities	122
4.2-15	Close up of one or two structures potentially affected by the change in the 100 year Floodplain – comparison of dams in and dams out floodplain	122
4.3-1	The timing of J.C. Boyle and Iron Gate dam excavation and removal has been designed to occur when river flow is at its lowest point beginning in June, greatly reducing the probability of embankment overtopping.	132

4.4.1-1	Total Economic Value: Typology and Valuation Methods	146
4.4.1-2	Economic Regions for Regional Economic Benefits	172
4.4.1-3	2009 Regional economy for Siskiyou and Klamath counties, the location of the Four Facilities	172
4.4.1-4	Commercial fishery management areas included in the analysis	175
4.4.1-5	Recent ocean commercial fishing in the area of analysis	176
4.4.1-6	Reservoir based recreation occurs in the region.	177
4.4.1-7	Ocean sport fishing contributes to the regional economy	178
4.4.1-8	In-river sport fishing angler days and expenditures	179
4.4.1-9	Whitewater boating user days and expenditures.	180
4.4.1-10	Irrigated Agriculture Acreage and Revenue in the Area of Analysis	185
4.4.2-1	Map of Current Tribal Reservation Locations, Other Features, and Reserve Areas	200
4.4.2-2	Historical tribal photo of dip net fishing on the Klamath River	202
4.4.2-3	Sampling an algal bloom in Copco 1 Reservoir. The State of California regularly posts public health warnings for these algal blooms due to the presence of the algal toxin microcystin	204
4.4.2-4	Klamath Tribal Elder, Betty Blackwolf, prays for the c'waam at the Annual Return of the c'waam Ceremony on the banks of the Sprague River. Creator-(G'mokumpk) told the Native people to honor the c'waam after the first snow of each year and that if the fish are healthy, the people and the land will be healthy.	206
4.4.2-5	Fire and blessings at Klamath Tribes return of the c'waam Ceremony. Once an important part of the Klamath Tribes' diet, the c'waam (Lost River sucker) fishery was closed in 1986 due to severe population declines and was listed as endangered under the ESA in 1988	208
4.4.2-6	The Klamath Tribes taking part in a traditional Powwow. Improved fish abundance with dam removal would strengthen ceremonial practice improving tribal identity.	208
4.4.2-7	Members of the Karuk Tribes still use traditional dip net fishing at Ishi Pishi Falls on the Klamath River	209
4.4.2-8	Traditional Karuk tribal smokehouse. Greater fisheries abundance would bolster transmission of traditional knowledge to youth, including the important practice of giving fish to elders	209
4.4.2-9	Resigmini Rancheria members eel fishing at the mouth of the Klamath. An important part of traditional tribal diet is Pacific lamprey (eels). Tribes have reported eel catch reductions down by 98 percent from historic level	216
4.4.5-1	Location of Wild and Scenic River segments in the Klamath Basin	227
4.4.6-1	An overview of recreational activities at regional reservoirs and lake	231
4.4.6-2	Comparison of Average Number of Days per Year with Acceptable Flows for Whitewater Boating and Fishing in the Hell's Corner Reach – Damslin Compared to Dams Out.	234
4.4.6-3	Whitewater boating opportunities in the Klamath Basin and in the region	235
4.4.7-1	The parcels around Copco 1 Reservoir, shown below, would be affected from changes to water access and/or views.	242

4.4.8-1	The Lower Klamath NWR would receive more water (measured in acre-feet) through the Refuge Allocation under KBRA than under dams remaining without the KBRA in both summer and winter seasons. Water deliveries with the KBRA would also vary less between wet and dry years than under existing conditions.	. 243
4.4.8-2	With implementation of the KBRA, the Lower Klamath NWR would be able to provide more acres of permanent wetland habitat during dry years and the same number of acres during the wettest years as under existing conditions. With the KBRA, the number of acres of fall and spring seasonal wetlands would be greater than without the KBRA in both wet and dry years. More acres of wetland habitat would result in larger numbers of waterfowl and other wetland species supported by the NWR.	.244
4.4.8-3	On the Lower Klamath NWR, the fall carrying capacity for dabbling and diving ducks (migratory waterfowl) would be greater with dam removal and implementation of the KBRA in both wet and dry years although the difference is more pronounced in dry years	.245
4.4.8-4	Late summer (August) carrying capacity for nongame waterbirds on the Lower Klamath NWR would be greater with implementation of the KBRA during dry and average years. The carrying capacity would be about the same as currently exists during wet years.	.245
4.4.9-1	Multiple exposure pathways are present in the lower Klamath River, the Klamath estuary and the near shore of the Pacific Ocean that may allow contaminated sediments to cause adverse ecological or human health effects.	.248
4.4.9-2	Summary results of the screening-level evaluation that was performed to identify potential adverse effects from exposures to reservoir sediments	.250
4.4.9-3	Sediment chemistry sampling in J.C. Boyle Reservoir, Oregon, during October, 2009	.251
4.4.9-4	A large bullhead sampled for contaminants in fish tissues from Iron Gate Reservoir during September, 2010	.251
4.4.9-5	Yellow perch sampled for contaminants in fish tissues from Copco 1 Reservoir during September, 2010	. 251
4.4.10-1	Biologist collects water samples from Iron Gate Reservoir during a summer algae bloom	. 253
4.4.10-2	Dense summer and fall blue-green algae (Cyanobacteria) blooms in Iron Gate Reservoir produce toxic microcystin resulting in poor water quality for fish and public health posting by the State of California.	.253
4.4.10-3	Median chlorophyll-a concentrations in Copco 1 and Iron Gate reservoirs are two to ten times greater than those documented in the mainstem river and exceed the threshold for potentially impaired beneficial uses for biota and humans, including aquatic habitat, recreation, agricultural supply, and fishing. Keno Impoundment (including Lake Ewauna) concentrations are similarly high.	. 254
4.4.10-4	Health advisory postings can occur in June–October during intense blue-green algal blooms in Copco 1 and Iron Gate reservoirs. These blooms can be transported into downstream reaches of the Klamath River	. 254
4.4.11-1	PacifiCorp Power Control Area Generation Resource Mix (as of 2007)	.258
4.4.12-1	Survey results regarding concern about the declines in Chinook salmon and steelhead that	263

4.4.12-2	Survey results regarding concern about the shortnose and Lost River suckers that are at very high risk of extinction.	263
4.4.12-3	Survey results regarding concern about the Klamath coho salmon that are at high risk of extinction	264
4.4.12-4	Survey results regarding an Action plan for dam removal and Basin Restoration	264

ABBREVIATIONS AND ACRONYMS

BCA Benefit Cost Analysis
BIA Bureau of Indian Affairs

BLM Bureau of Land Management

BT benefits transfer

CARB California Air Resources Board

CDFG California Department of Fish and Game
CEQA California Environmental Quality Act
CESA California Endangered Species Act

cfs Cubic feet per second

CH₄ Methane

CO₂ Carbon Dioxide

CPUC California Public Utilities Commission

CWA Clean Water Act

DDT dichlorodiphenyltrichloroethane
DOC US Department of Commerce

DOI United States Department of the Interior

DRE Dam Removal Entity

EDRRA Evaluation of Dam Removal and Restoration of Anadromy

EIS/EIR Environmental Impact Statement/Environmental Impact Report

eGRID Emissions & Generation Resource Integrated Database

ESA Federal Endangered Species Act
ESU Evolutionary Significant Unit

FERC Federal Energy Regulatory Commission

FHWA Federal Highway Administration

GHG Greenhouse gases

GWP Global warming potential IMPLAN IMpact analysis for PLANning

IPCC Intergovernmental Panel on Climate Change

KBRA Klamath Basin Restoration Agreement

KHSA Klamath Hydroelectric Settlement Agreement

km Kilometer

KMZ Klamath Management Zone

mg/L milligrams per liter

MTCO₂e Metric tons of carbon dioxide equivalent

MW Megawatts

MWh Megawatt hours

NCRWQCB North Coast Regional Water Quality Control Board

NED National Economic Development
NEPA National Environmental Policy Act

NH₄⁺ ammonia

NHPA National Historic Preservation Act

NOAA Fisheries Service National Oceanic and Atmospheric Administration Fisheries Service

N₂O Nitrous Oxide

NPS National Park Service

NRC National Research Council

NWR National Wildlife Refuge

NWSRA National Wild and Scenic Rivers Act

O&M Operations and Maintenance

OM&R Operations, Maintenance, and Replacement
OCCRI Oregon Climate Change Research Institute
ODEQ Oregon Department of Environmental Quality

OMB Office of Management and Budget
OPCC Opinion of Probable Construction Cost
OPUC Oregon Public Utilities Commission
ORV Outstanding remarkable value

OWRD Oregon Water Resources Department

PCA Power Control Area

PCBs polychlorinated biphenyls

PO₄³⁺ Ortho-phosphate

PUC Public Utilities Commission

PV Present Value

Reclamation Bureau of Reclamation

RED Regional Economic Development

RP revealed preference

RPS Renewable portfolio standard

RM River Mile

SEF Sediment Evaluation Framework

SONCC Southern Oregon Northern California Coast

SP Stated preference

SSC suspended sediment concentration

taf Thousand Acre-Feet

TCC Technical Coordination Committee

TMDL Total Maximum Daily Load
TMT technical management team

TN total nitrogen

TP Total Phosphorous

μg/L micrograms per liter

USEPA United States Environmental Protection Agency

USFWS United States Fish and Wildlife Service

USGCCRP United States Global Climate Change Research Program

USGCRP United States Global Change Research Program

USGS
United States Geological Survey
WHO
World Health Organization
WQST
Water Quality Sub-team
WSR
Wild and Scenic River
WSRA
Wild and Scenic River Act

WTP Willingness to Pay

WURP Water Use Retirement Program

WY Water year °C Celsius Fahrenheit

Executive Summary

ES.1 INTRODUCTION

The Klamath Basin covers over 12,000 square miles in southern Oregon and northern California (see Figure ES-1) and contains many natural resources and economic opportunities related to fisheries, farming, ranching, timber harvest, mining, and recreation. Each of these resources and opportunities has economically sustained communities throughout the basin for many decades. The Klamath Basin is also home to six federally recognized Indian tribes who have depended on many of these same natural resources for thousands of years to support their way of life and spiritual wellbeing. Natural resources in the basin, including clean water, abundant and reliable supplies of fish, and terrestrial plants and animals, are central to their cultural identity.

The construction of PacifiCorp's hydroelectric dams on the Klamath River combined with the development of irrigated agriculture, both beginning in the early 1900s, contributed to declines in fisheries and water quality as well as to detrimental impacts to tribal resources and culture throughout the Klamath Basin. Crises in agricultural water availability and fish

Klamath River.

Figure ES-1: Klamath River Basin Map. The Klamath Basin covers over 12,000 square miles and includes PacifiCorp's J.C. Boyle, Copco 1, Copco 2, and Iron Gate dams on the main stem of the

populations, discussed in more detail below, combined with challenges and uncertainties involved in obtaining a new long-term Federal Energy Regulatory Commission (FERC) license for PacifiCorp's Klamath Hydroelectric Project 2082 (inclusive of the J.C. Boyle, Copco 1, Copco 2, and Iron Gate dams) led willing basin stakeholders to come to agreement on the Klamath Hydroelectric Settlement Agreement (KHSA) and the Klamath Basin Restoration Agreement (KBRA) (see Section ES.1.3, The KHSA and KBRA).

1

¹ PacifiCorp refers to the current utility and all previous owners.

Figure ES-2: Thousands of adult salmon died in the lower Klamath River during September 2002.

Causative factors included low flows, high

concentration of returning Chinook salmon, warm

ES.1.1 Purpose of this Report

This report, the *Klamath Dam Removal Overview Report for the Secretary of the Interior: An Assessment of Science and Technical Information* (Overview Report), presents a synthesis of new peer-reviewed scientific studies conducted by a multi-agency Technical Management Team (TMT), as well as other relevant existing reports. The Overview Report address the following four questions in the KHSA for the Secretary of the Interior to make a fully informed determination (Secretarial Determination) on whether or not to remove four Klamath Hydroelectric Project dams (J.C. Boyle, Copco 1, Copco 2, and Iron Gate) also referred to as the Four Facilities, on the main-stem of the Klamath River. Table ES-1 summarizes these questions and where each is analyzed in this Executive Summary.

Table ES-1: Four Questions of the Secretarial Determination

Question	Section
Will dam removal and KBRA implementation advance salmonid and other fisheries of the Klamath Basin over a 50-year time frame?	ES.2
What would dam removal entail, what mitigation measures may be needed, and what would these actions cost?	ES.3
What are the major potential risks and uncertainties associated with dam removal?	ES.4
Is dam removal in the public interest, which includes, but is not limited to, consideration of potential effects on local communities and tribes?	ES.5

This Overview Report focuses on addressing these four KHSA-derived questions and thus is not a comprehensive synthesis of all the literature available on the Klamath Basin. Findings and conclusions addressing the first three questions are contained in this report; the fourth question, as to whether dam removal and KBRA implementation is in the public interest, is not directly answered since that determination will be made by the Secretary of the Interior. The Overview Report, however, does summarize findings in subject areas relevant to a public interest determination, including the potential effects of dam removal and KBRA implementation on

- National and regional economic development,
- Tribal communities,
- PacifiCorp customers,
- Cultural resources,
- Real estate values,

- National Wildlife Refuges,
- Wild and Scenic River values,
- · Recreational opportunities,
- · Water quality, and
- Greenhouse gas emissions, among other subject areas.

This report also provides some indicators of individuals' and households' views regarding declining fisheries and fish populations in the Klamath Basin and whether the KHSA and KBRA should be implemented. These views were obtained with surveys collected at a national level, a two-state area (Oregon and California), and in a 12-county region in northern California and southern Oregon, as well as advisory votes in Siskiyou County, California, and Klamath County, Oregon, regarding dam removal and KBRA, respectively.

ES.1.2 Klamath Basin Background

There are multifaceted issues in the Klamath Basin including water scarcity, environmental degradation, and declining fish populations, each of which adversely affects agricultural and fishery communities, their respective economies, and tribal communities. These issues reached a crisis point in the early 2000s, with drastic reductions in irrigation water deliveries to farms in the upper Klamath Basin in 2001, and a major salmon die-off in the lower Klamath River in 2002 due, in part, to reduced river flows that would have supported anadromous fish species. Weak Klamath River salmon stocks resulted in the closure of commercial salmon fishing in 2006 in the Klamath Management Zone (KMZ) on the California coast, and severely curtailed the commercial fishing season along the Oregon coast. Since 2005, growth of toxic algae behind two Klamath River dams (Copco 1 and Iron Gate) resulted in posted warnings against water contact in the two reservoirs and the lower Klamath River.

Long-term declines in Klamath Basin fisheries have been estimated at 92 to 96 percent for wild fall-run Chinook salmon, 98 percent for spring-run Chinook salmon, 67 percent for steelhead trout (since 1960), 52 to 96 percent for coho salmon, and 98 percent for Pacific Lamprey. These declines, which are attributable to the cumulative effects of dam construction, hydrologic modifications, changing ocean conditions, agricultural development, timber harvest, overfishing, and mining, have created hardships for commercial fisheries and tribal communities. Of particular note, the Klamath Tribes in the upper Klamath Basin have been without a Chinook salmon fishery for about 90 years (since the completion of Copco 1 Dam in 1922), adversely affecting their way of life. The declines in coho salmon in the Klamath Basin have contributed to their listing as threatened under the Endangered Species Act (ESA) (see Table ES-2).

Table ES-2: Declines in Klamath River Anadromous Fish

Species	Historical Level	Percent Reduction from Historical Levels (estimates of individual runs)	Source
Pacific Lamprey	Unknown	98% (Represents reduction in tribal catch per effort)	Petersen Lewis 2009
Steelhead	400,000 ¹	67% (130,000)	Leidy and Leidy 1984; Busby et al. 1994
Coho salmon	15,400– 20,000	52% to 95% (760–9,550)	Moyle et al. 1995; Ackerman et al. 2006
Fall-run Chinook salmon	500,000 ²	92% to 96% (20,000–40,000) ³	Moyle 2002
Shasta River Chinook salmon ⁴	20,000– 80,000	88% to 95% (A few hundred to a few thousand)	Moyle 2002
Spring-run Chinook salmon	100,000 ²	98% (2,000) ²	Moyle 2002

This estimate is from 1960. Anadromous fish numbers were already in decline in the early 1900s (Snyder 1931).

² Includes Klamath River and Trinity River Chinook.

³ Excludes hatchery-influenced escapement.

⁴ Shasta River is a subset of the overall Klamath River Chinook population.

Coincident with these ongoing crises in the Klamath Basin, the 50 year FERC license for PacifiCorp's Klamath Hydroelectric Project 2082 including the Four Facilities (J.C. Boyle, Copco 1, Copco 2, and Iron Gate, shown on Figure ES-1) expired in 2006. PacifiCorp pursued relicensing Project 2082; however, the large cost and liability involved in relicensing encouraged PacifiCorp to enter into collaborative discussions with other basin stakeholders to identify ways to improve basin fisheries, including the possibility of decommissioning the Four Facilities, while protecting the interests of their customers. The high costs of Klamath Hydroelectric Project relicensing are related to Federal Power Act (FPA) regulations which would ultimately required fish passage facilities at the dams and Clean Water Act (CWA) 401 Water Quality Certification which would ultimately require changes to the Four Facilities to improve poor water quality created by the reservoirs. The technical complexities of fish passage and the severity of the water quality problems at the Four Facilities generated substantial uncertainty surrounding the opportunities of success on both factors. In addition, relicensing would result in reduced power generation at the Four Facilities which, together with fish passage and water quality improvements costs and risks, would reduce the economic viability of the Klamath Hydroelectric Project to PacifiCorp and its customers.

ES.1.3 The KHSA and KBRA

The combination of long-term declines in fisheries, recent fishery and water availability crises in the Klamath Basin, and the potentially high cost and risk of relicensing the Four Facilities, led to the realization among many stakeholders in the basin that the status quo was unacceptable and the only sustainable option for solving these basin-wide challenges would be a collaborative and mutually beneficial agreement among willing stakeholders. This realization culminated in the February 10, 2010 signing of the KHSA and KBRA in Salem, Oregon, after several years of negotiation.

The KHSA is a multi-party agreement that, if fully implemented, would result in the removal of the Four Facilities within the Klamath Hydroelectric Project 2082. Their removal would allow fish passage to the upper basin, improve flow and water quality below the dams, and likely reduce juvenile salmon fish disease, all of which will improve tribal, commercial, and sport salmonid fisheries. Table ES-3 provides general information and dimensions of the Four Facilities and Figures ES-3 through ES-6 show the major features of each of the Four Facilities.

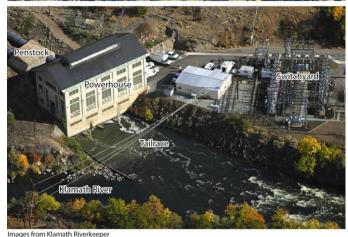
Table ES-3: General Information on the Four Facilities on the Klamath River

	J.C. Boyle	Copco 1	Copco 2	Iron Gate
Year Operational	1958	1922	1925	1962
Location (RM)	224.7	198.6	198.3	190.1
Dam Type	Concrete & Earthfill Embankment	Concrete	Concrete	Earthfill Embankment
Dam Maximum Height	68 feet	135 feet	33 feet	189 feet
Dam Crest Length	692 feet	410 feet	335 feet	740 feet
Reservoir Surface Area	420 acres	1,000 Acres	N/A	944 Acres
Reservoir Storage Volume	2,629 acre-feet	40,000 acre-feet	73 acre-feet	53,800 acre-feet
Spillway Type	Overflow Spillway with Control Gates & Diversion Culvert	Overflow Spillway with Control Gates & Diversion Tunnel	Overflow Spillway with Control Gates	Uncontrolled Overflow Spillway and Diversion Tunnel
Power Capacity (Megawatts)	98	20	27	18

Figure ES-3: J.C. Boyle Dam and Powerhouse

Image from Klamath Riverkeeper

Image from Klamath Riverkeeper


Figure ES-4: Copco 1 Dam and Powerhouse

Images from Klamath Riverkeeper

Figure ES-5: Copco 2 Dam and Downstream Powerhouse

Signatories of the KHSA, with the exception of the Federal government and PacifiCorp, also signed the KBRA. The Federal government is not able to sign the KBRA until Congress passes Federal legislation authorizing the agreement. The KBRA includes interrelated plans and programs intended to benefit fisheries throughout the basin, water and power users in the upper basin, counties, Indian tribes, and basin communities. KBRA fisheries programs include extensive habitat restoration, improvements to water flow and quality, and a fish reintroduction program in the upper basin. Since the KBRA would be fully implemented under an Affirmative Secretarial Determination on the removal of the Four Facilities, implementation of the KBRA was evaluated together with the KHSA.

The following sections summarize the analysis and conclusions relative to the four questions in the KHSA.

ES.2 WILL DAM REMOVAL AND KBRA ADVANCE RESTORATION OF SALMONID AND OTHER FISHERIES OF THE KLAMATH BASIN OVER A 50-YEAR TIME FRAME?

The TMT concluded that dam removal and KBRA implementation would improve salmonid fish (salmon, steelhead, and redband trout) populations and associated fisheries primarily by increasing access to historical habitat and

> thermal refuge areas in the upper basin, restoring mainstem and tributary habitat, and improving key biological and physical factors heavily influencing the health and survival of these fish populations (e.g. hydrology, sediment transport, water temperature, and water quality). The following two sub-sections discuss the short-term and long-term effects of dam removal on fisheries.

ES.2.1 Short-Term Effects of Dam Removal

In the short-term, reservoir drawdown associated with dam removal would result in the release of high suspended sediment concentrations (SSCs). Figure ES-7 shows the modeled SSCs immediately downstream of Iron Gate Dam resulting from removal of the Four Facilities.

Although short in duration, this suspended sediment release is expected to result in lethal and sub-lethal effects on a specific part of fish populations, in particular, coho salmon smolts and steelhead trout in the mainstem Klamath River (see Figure ES-8) during the peak sediment release from early January through March 15. Estimates of mortality for all life stages of salmon (Chinook and coho) are expected to be less than 10 percent from high SSCs during dam removal. Estimated mortality for adult and juvenile steelhead would be about 10 to 15 percent; in a worse case situation, mortality of adult steelhead could reach 28 percent.

The timing of reservoir drawdown was selected to coincide with periods of naturally high SSCs in the Klamath River, as aquatic species have already adapted to higher winter SSCs. In addition, based on the distribution and life-history timing of aquatic species in the basin, only a portion of some populations are likely to be present in the mainstem Klamath River during the period of peak SSCs (See Figure ES-9). Most salmon and steelhead life stages would be in tributaries, further downstream where SSCs would be diluted by tributary streams and rivers, or in the Pacific Ocean.

Figure ES-7: Modeled suspended sediment concentrations (SSC) immediately downstream of Iron Gate Dam for dam removal in dry, median, and wet water years. Background concentrations are modeled using data from all water year types for 1961–2008.

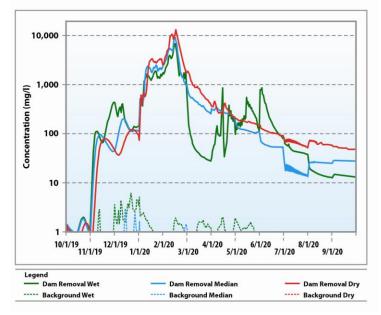


Figure ES-8: Estimated mortality impacts on basin-wide production (number of adults or juveniles) resulting from dam removal for key salmonid species for both median (most likely) and low flow (worst case) water years.

DAM REMOVAL SCHEDULE NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC J.C. BOYLE DAM COPCO 1 DAM * COPCO 2 DAM RON GATE DAM LIFE CYCLE Adult Migration Spawning FALL CHINOOK **Juvenile Outmigration Adult Migration** SPRING CHINOOK Juvenile Outmigration Juvenile Outmigration **Adult Migration** COHO SALMON **Juvenile Outmigration** Juvenile Redistribution Adult Migration Run-Backs in River SUMMER Rea STEELHEAD **Juvenile Outmigration** Half-Pounder Residence Fall-Run Adult Migration Winter-Run Adult Migration Winter-Run Adult Migration Run-Backs in River WINTER STEELHEAD Rearing **Juvenile Outmigration** Half-Pounder Residence Half-Pounder Residence Adult Migration Spawning GREEN STURGEON Post-Spawning Adult Holding in Mainsten Juvenile Outmigration Adult Migration Spawning PACIFIC LAMPREY Incubation Rearing Juvenile Outmigration Legend (life stage representation colors vary by species) Sturgeon Adult Migration Dam Removal: **Species Migration:** Reservoir Drawdown and Sediment Release Life Stage Present in Mainstem of Klamath River Sturgeon Juvenile Migration Dam Removal Peak Time Lamprey Adult Migration 🛣 No significant release of sediment expected Lamprey Juvenile Migration Direction of Salmonid Adult Migration Direction of Salmonid Juvenile Migration Spawning (all species)

Figure ES-9: Timeline depicting the timing of migratory fish lifecycles in the mainstem of the Klamath River coinciding with dam removal plans.

ES.2.2 Long-Term Effects of Dam Removal

Improvements to the resiliency of the Klamath Basin ecosystem would likely occur from the integrated benefits of (1) increased habitat area related to the reconnection of 420 miles of river by removal of the Four Facilities (see Figure ES-10); (2) coordinated basin-wide improvements to aquatic habitat through active restoration; (3) a real-time water management program incorporates key elements of the natural hydrograph; (4) an active reintroduction program; and (5) a fisheries monitoring and evaluation program that supports adaptive management. removal and KBRA implementation are anticipated to improve the quality currently accessible fish habitat, provide access to historical interior habitats that are currently unavailable due to the dams, and improve the viability of native fish populations by increasing their abundance, life history diversity, productivity, and spatial distribution.

Fish modeling results show that dam removal, combined with restoration of aquatic habitats as anticipated in the KBRA, is expected to increase the annual production of adult Chinook salmon by an average of 83 percent beginning in 2020 with dam removal.

The ocean commercial and sport harvests of Chinook salmon are also forecasted to increase by an annual average of 50 percent, the in-river tribal harvest would increase by an annual average of 59 percent, and the in-river recreational fishery would increase by an annual average of 9 percent after dam removal. A fisheries expert panel convened to independently assess whether dam removal would advance Klamath Basin Chinook fisheries concluded that dam removal and KBRA implementation would better address the core factors that affect fish populations and would have a much higher likelihood of success than progressing under current conditions with the dams remaining in place.

With dam removal, coho salmon would be expected to rapidly recolonize habitat upstream of Iron Gate Dam. Assuming coho salmon distribution would extend up to Spencer Creek after dam removal, coho salmon from the upper Klamath River population would reclaim 68 miles of habitat: approximately 45 miles in the mainstem Klamath River and tributaries and 23 miles currently inundated by the reservoirs. Dam removal and KBRA implementation are also expected to result in significant improvements to mainstem Klamath River hydrology, instream habitat, water quality, and decrease the incidence of

Figure ES-10: Increased salmon and steelhead distribution in Klamath Basin under current conditions (with dams) compared to historical conditions (without dams).

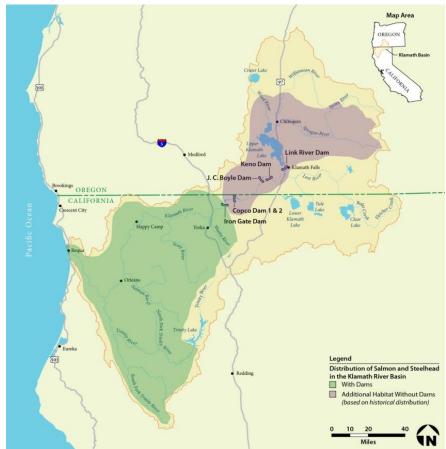
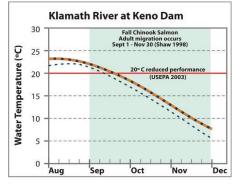
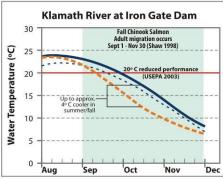
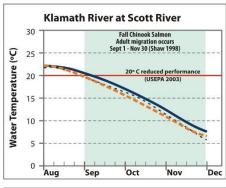





Figure ES-11: Modeled water temperatures during the fall Chinook salmon migration period for the Klamath River indicate that future (2020–2061) water temperatures will be 1–3°C greater than historical (1961–2009) temperatures due to climate change. Dam removal would decrease summer and fall temperatures downstream of Iron Gate Dam, with diminishing effects further downstream. Water temperatures in the Keno Reach would not be affected by dam removal. Simplified patterns from Perry et al. (2011) use standard "GFDL" Global Climate Model output.

Legend
---- Historical (1961-2009)
--- Dams removed + KBRA hydrology + climate change
Dams remain + BO hydrology + climate change

disease downstream of Iron Gate Dam thereby improving coho populations throughout the Klamath Basin. Populations currently in the vicinity of Iron Gate Dam are most affected by dam-related factors, and these populations would receive the most benefits from dam removal. The benefits of dam removal and KBRA implementation for coho salmon go beyond increased abundance. Colonization of the Klamath River between Keno and Iron Gate dams by the upper Klamath coho salmon population would likely improve the viability of the Southern Oregon/Northern California Coast Evolutionary Significant Unit (ESU) by increasing its diversity, productivity, and spatial distribution. In general, as habitat availability, quality, and diversity increase for an ESU, so does the resilience of the population, reducing the risk of extinction and increasing chances for recovery.

Dam removal would reestablish steelhead upstream of Iron Gate Dam and increase habitat available to this species by 420 stream miles. Because of their ability to navigate steeper gradient channels and spawn in smaller, intermittent streams, and their ability to withstand a wide range of water temperatures, steelhead distribution in the basin would be expected to expand to a greater degree than that of any other anadromous salmonid species, thereby increasing steelhead abundance in the Klamath Basin. This conclusion is based on the likelihood of steelhead having access to substantial new habitat that will undergo restoration, the fact that other similar species (resident redband trout) are doing well in the upstream habitat, and that steelhead are currently at lower abundances than historical values but not yet rare. In general, removing dams and implementing KBRA would likely support a greater number of spawning areas, increase genetic diversity, and allow for a wider variety of life history patterns, which could increase the population's resilience.

Dam removal would increase free-flowing redband/rainbow trout habitat downstream of Keno Dam by restoring river channel habitat inundated by reservoirs, eliminating extreme daily flow and water temperature fluctuations in the J.C. Boyle Peaking Reach, and increasing flows in the J.C. Boyle Bypass Reach. This would expand the total distribution of a resident trophy-trout fishery by approximately seven times in this area. Benefits to redband/rainbow trout in tributaries to Upper Klamath Lake would be realized by habitat improvements stemming from implementation of the KBRA, and are expected to increase trout productivity upstream of Upper Klamath Lake.

Overall, dam removal and KBRA implementation would be a major step forward to restoring anadromous fish and in the conservation of native fish populations in the Klamath Basin. Table ES-4 summarizes the main long-term benefits for salmonid species as a result of dam removal and implementation of the KBRA. When estimates of mortality and sublethal effects in the short-term from sediment discharge are considered in conjunction with potential increases in habitat area and improvements in water quality, it is expected that populations would fully recover from any adverse effects from high SSCs within one to five years following dam removal. Dam removal and implementation of the KBRA would have substantial and important benefits for other fish species in the Klamath Basin as summarized in Table ES-5.

Table ES-4: Major Long-Term Benefits for Salmonid Restoration from Dam Removal and Implementation of the KBRA

Water Quality Benefits

Accelerates when the river meets Oregon and California water temperature, nutrient, dissolved oxygen, pH, and chlorophyll-a TMDL allocations (see Figure ES-11).

Largely eliminates in 2020 elevated late summer/fall river water temperatures in and below the Hydroelectric Reach (See Figure ES-11).

Largely eliminates in 2020 algal toxins, low dissolved oxygen, and high pH that are produced in Copco 1 and Iron Gate reservoirs and transported downstream.

Habitat Benefits

Provides anadromous fish with up to 420 miles of currently blocked riverine habitat in the upper basin.

Provides access to thermal refuge areas (springs and cool-water tributaries) in the upper basin that would help buffer increased water temperatures associated with future climate change.

Provides for natural recruitment of spawning gravel and river processes within and below the Hydroelectric Reach.

KBRA Fisheries Restoration Plan accelerates restoration of fish habitat throughout the basin starting in 2012.

Expands opportunity to create springtime flushing flows (KBRA Environmental Water Program) to increase flow variability and sediment bed movement, which are anticipated to reduce juvenile salmonid disease (see Figure ES-12).

Reduces incidence of salmon disease by decreasing crowding of adult salmon through expanded migration and spawning areas.

KBRA Fisheries Reintroduction and Management Plan accelerates the effective use of the upper basin by salmonids.

Improves base flows for salmonids, particularly in drought years, through KBRA Water Resources Program.

Eliminates adverse effects of hydroelectric peaking and stranding of fish in the Hydroelectric Reach.

Figure ES-12: Fish diseases are widespread in the mainstem of the Klamath River during certain time periods and in certain years and have been shown to adversely affect freshwater abundance of Chinook and coho salmon, which are an intermediate host to one prevalent Klamath River fish disease caused by the myxozoan C. Shasta. Habitat conditions which support C. Shasta and its polychaete host caused by the dams include: stable river flows; relatively stable streambed; crowding of adult salmon at barriers to fish passage; and plankton-rich discharge from reservoirs.

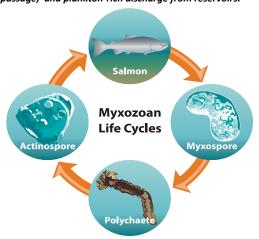


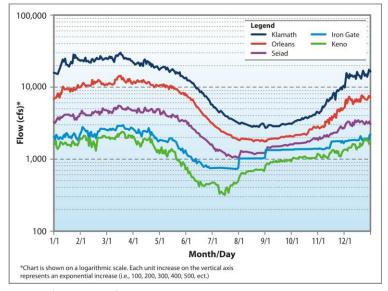
Table ES-5: Benefits to Other Fish Species from Dam Removal and KBRA Implementation

Species	Current Status	Benefits of Dam Removal and KBRA
Short nose and Lost River Suckers in the Upper Klamath Basin	Both species are listed as endangered under ESA and are declining under current conditions. Both species could become extinct in the Klamath Basin unless substantial recruitment events occur.	KBRA implementation would provide greater promise for preventing extinction of these species, and for increasing overall population abundance and productivity, than would occur if the dams were left place and KBRA was not implemented. Implementation of KBRA would improve sucker habitat in Upper Klamath Lake, its tributaries, and wetlands that support multiple life stages of these species.
Bull Trout in the Upper Klamath Basin	Bull trout are currently listed as threatened under the ESA. In the upper Klamath Basin, this species is confined to the far upper reaches of the watershed. Bull trout populations in the Klamath Basin face a high risk of extirpation and are considered extinct in California. Threats to bull trout in the Klamath Basin include habitat loss and degradation caused by reduced water quality, land use, water diversions, roads, and non-native fishes.	KBRA implementation would likely accelerate compliance with TMDL water quality objectives in the upper basin, thereby improving conditions for this species and increasing overall population abundance and spatial distribution.
Pacific Lamprey in the Klamath Main stem	Pacific lamprey have experienced sharp declines in the Klamath River and was petitioned for listing under the ESA in 2003. The Four facilities have blocked the range of Pacific lamprey to areas upstream of Iron Gate Dam.	Removal of the dams is considered to be the only feasible method for expanding the current range of Pacific lamprey above Iron Gate Dam. Dam removal with KBRA implementation could increase Pacific lamprey production by up to 14 percent compared with dams remaining in place. The increase production could potentially be more if habitat in the upper Klamath Basin is accessible and suitable.
Native Lamprey present in the mainstem and upper basin (five resident species)	Native lamprey has experienced sharp declines in the Klamath River and upper basin with three species petitioned for listing under the ESA in 2003.	Dam removal would eliminate the adverse effects of power peaking on resident lamprey species in the Klamath Hydroelectric Reach. Dam removal and KBRA implementation would likely increase lamprey populations as physical, chemical, and biological processes of the Klamath River were restored. Capacity for the freshwater-resident lamprey species in the upper Klamath Basin may increase with implementation of the KBRA aquatic habitat restoration measures.
Eulachon in the Klamath estuary	Eulachon were historically abundant, but currently are rarely observed in the lower Klamath River and Estuary. The Southern Distinct Population Segment of eulachon, which includes the Klamath River, is ESA listed as threatened.	With dam removal and KBRA implementation, and implementation of the TMDLs, water quality will improve in the estuary. It is anticipated that habitat restoration efforts under KBRA and water quality improvements could directly contribute to recovery of any remnant eulachon populations in the estuary.
Green Sturgeon- in the lower 67 miles of the Klamath River	Green sturgeon is designated as a Species of Concern by NOAA Fisheries Service. Their habitat has been affected by the dams' alteration of river temperature and flow regime.	Dam removal and KBRA implementation would return the Klamath River water temperatures and flow regime to a condition that more closely mimics historical patterns and would likely benefit green sturgeon populations.

ES.3 WHAT WOULD DAM REMOVAL ENTAIL, WHAT MITIGATION MEASURES MAY BE NEEDED, AND WHAT WOULD THESE ACTIONS COST?

The TMT developed a detailed deconstruction plan, titled *Detailed Plan for Dam Removal – Klamath River Dams* (Reclamation 2011b). This plan integrated requirements in the KHSA for hydroelectric operations through 2019; considered the full range of flow conditions that could be encountered during dam removal; considered the unique features of each dam and each reservoir; and, considered reservoir drawdown rates that minimize bank slumping and address the need to minimize impacts on the ecosystem.

Reservoir drawdown and facilities removal was designed to minimize impacts on fish species and to protect threatened coho salmon. These goals resulted in the formation of a plan that calls for drawdown of the three larger reservoirs in the winter of a single year (2020). The plan ensures that the majority of reservoir sediments are transported downstream in January through March 15 when coho salmon, along with several other native fish species, are not present in large numbers in the Klamath River mainstem. This time period also corresponds to higher river flows needed to erode and transport the fine-grained reservoir sediments to the Pacific Ocean (see Figure ES-13).


The dam embankments and structures would be removed over the remainder of 2020, taking into account river hydrology and safety considerations. Primary among these factors is the removal of the Iron Gate Dam embankment starting in June 2020 when flows in the Klamath River significantly decrease providing additional protection against the risk of the dam overtopping during its deconstruction.

With dam removal, and the associated drawdown of the reservoir, the reservoir bottoms would be exposed. The DRE would undertake revegetation efforts with the goal of establishing sustainable riparian, wetland, and upland habitats on the newly exposed reservoir bottoms as early as feasible after reservoir drawdown (spring time) and again in the fall. Hydroseeding would be employed with a mixture of native grasses; riparian and wetland plantings would also be established.

Partial Dam Removal

The TMT also evaluated partial removal of the Four Facilities to achieve a free flowing river (see Figure ES-14 through 17). Partial facilities removal would remove most if not all portions of the Four Facilities while some other portions of the Four Facilities (e.g. pipelines, penstocks, and

Figure ES-13: Chart of the median monthly flows in the Klamath River at specific USGS gages. Reservoir drawdown is planned to occur from January through March 15 (2020), coinciding with typically high flows in the Klamath River.

Source: Reclamation 2011b

Figure ES-14: Partial removal of J.C. Boyle Dam would include removal of embankment dam and fish ladder, providing a free flowing river and allowing full volitional fish passage. However, certain structures, including the steel pipeline and supports, would be retained.

Figure ES-15: Partial removal of Copco 1 Dam would include removal of the concrete dam, providing a free flowing river and allowing full volitional fish passage. Certain structures, including the penstocks and powerhouse, would be retained.

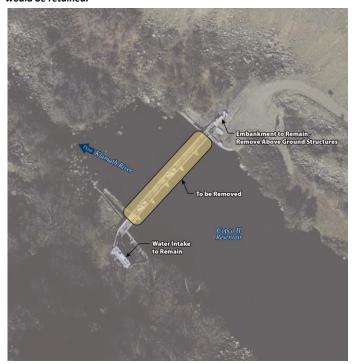



Figure ES-16: Partial removal of Copco 2 Dam would include removal of spillway gates, providing a free flowing river and allowing full volitional fish passage. Certain structures, including the water intake and embankments, would be retained.

powerhouses) would remain in place. Leaving a portion of the Four Facilities in place would result in the same aquatic effects (short-term and long-term) as full facility removal but would require long-term maintenance (primarily to limit public access for safety) in exchange for reduced construction and mitigation costs.

The removal of Iron Gate Dam would compromise the existing water supply pipeline to the City of Yreka. Under terms of the KHSA, the DRE would modify the pipeline to allow continued water supply service to the City of Yreka. Preliminary designs for an elevated pipeline and steel pipeline bridge, as well as modifications to the water supply intake at Fall Creek, were prepared in order to estimate costs. If dam removal proceeds, final designs for the Yreka pipeline would be prepared in consultation with the City of Yreka.

Figure ES-17: Partial removal of Iron Gate Dam would include removal of embankment dam, providing a free flowing river and allowing full volitional fish passage. Certain structures, including the spillway and powerhouse, would be retained.

ES.3.1 Mitigation Measures

Several mitigation measures were identified to help reduce the effects of dam removal as listed in Table ES-6. Additional mitigation actions may be identified at a later date in a "Definite Plan" for dam removal if there is an Affirmative Secretarial Determination. Moreover, a Record of Decision (ROD) on removal of the Four Facilities could include additional mitigation actions. Additional mitigation actions would likely increase the estimated cost of dam removal.

Table ES-6: Dam Removal Mitigation Measures

Mitigation Measure	Action of the DRE
Aquatic Species Relocation	Capture out-migrating juvenile salmonids and Pacific lamprey from several tributaries and release them at locations to avoid the effects of high SSCs. Mussels in the Hydroelectric Reach and in the lower Klamath River downstream of Iron Gate Dam would be relocated to tributary streams or upstream of J.C. Boyle Reservoir.
Protection of Downstream Water Intakes	Modify any intake and pump sites in the lower Klamath River to reduce the temporary effects of high suspended sediment from dam removal.
Protection of Culturally Significant Sites New or Modified Recreation Facilities	Protect cultural resource sites eligible for inclusion on the National Register of Historic Places and California Register through construction measures. Protect tribal artifacts or grave sites if encountered. Identify new recreational facilities and river access points to replace facilities removed with the dams and reservoirs.
Bridge and Culvert Relocation Bat Habitat Replacement	Replace or relocated the Jenny Creek Bridge (Iron Gate Reservoir) and some culvert crossings along Copco Road that could be compromised by reservoir removal. Construct bat habitat near each dam site to replace bat habitat lost by removing the structures associated with the Four Facilities.
Replace or Deepen Groundwater Wells Reservoir Bottom (Parcel B Land) Fencing	Deepen or replace groundwater wells to restore production rates affected by groundwater level declines around Copco 1 and Iron Gate reservoirs. Install fencing around newly exposed reservoir bottoms to protect revegetation and restoration efforts.
Replace Lost Wetlands Changes in the 100-year Floodplain Downstream of Iron Gate Dam (River Miles 190-172)	Mitigate or replace wetlands, estimated at less than 20 total acres. Work with willing land owners to flood proof, relocate, or protect against the increase in flood risk at affected structures (estimated to be less than six residences).
Flood Warning System	Inform FEMA of a planned major hydraulic change to the Klamath River that could affect the 100-year floodplain. Inform the National Weather Service's River Forecast Center of the potential change in the system so they could develop new flood-routing models for their flood-warning system.

ES.3.2 Estimated Dam Removal Costs

Table ES-7 presents a summary of the total costs for the full facilities removal scenario. The most probable cost is estimated at \$291.6 million (2020 dollars). The partial facilities removal scenario was estimated to be \$234.6 million, with an additional life cycle cost (annual maintenance through 2061) of \$12.4 million (2020 dollars) (see Table ES-8). A Monte Carlo-based simulation process was used to determine the one percent probability minimum and maximum cost ranges. The Monte Carlo-based simulation is a problem-solving technique used to approximate the probability of certain outcomes by running multiple trials using random variable simulations. It is based on a computerized mathematical technique that accounts for risk in quantitative analysis and decision-making.

Table ES-7: Summary of Costs for Full Removal of all Four Facilities (2020 dollars)

	Forecas	Forecast Range	
	Minimum (Less than a 1% Chance the Actual Cost will be Below this Estimate)	Maximum (Less than a 1% Chance the Actual Cost will be Above this Estimate)	Most Probable ¹
Dam Facilities Removal			76,618,994
Reservoir Restoration			21,728,000
Recreational Facilities Removal			797,305
Yreka Water Supply Modifications			1,765,910
Mobilization and Contingencies ²			50,728,393
Escalation to January 2020			36,461,398
Subtotal (Field Costs)	157,600,000	301,200,000	188,100,000
Engineering (20%) ³			37,600,000
Mitigation (35%) ⁴			65,900,000
Total Construction Cost	238,000,000	493,100,000	291,600,000

¹ The most probable costs were used in the economic analysis.

Table ES-8: Summary of Costs for Partial Removal of all Four Facilities (2020 dollars)

	Forecast Range		
	Minimum (Less than a 1% Chance the Actual Cost will be Below this Estimate)	Maximum (Less than a 1% Chance the Actual Cost will be Above this Estimate)	Most Probable ¹
Dam Facilities Removal			52,096,172
Reservoir Restoration			21,728,000
Recreational Facilities Removal			797,305
Yreka Water Supply Modifications			1,765,910
Mobilization and Contingencies ²			38,830,385
Escalation to January 2020			27,582,228
Subtotal (Field Costs)	116,600,000	230,200,000	142,800,000
Engineering (20%) ³			28,400,000
Mitigation (45%) ⁴			63,400,000
Total Construction Cost	185,100,000	403,600,000	234,600,000
Total Life Cycle Cost	9,000,000	26,800,000	12,350,000

The most probable costs were used in the economic analysis.

The States of Oregon and California collectively agreed to fund dam removal at a cost of up to \$450 million (2020 dollars) as defined in the KHSA. PacifiCorp customers in Oregon and California would pay \$200 million of this amount via a surcharge. The most probable cost estimates for full and partial facilities removal fall beneath this cost cap. The maximum projected cost for full facilities removal would exceed the cost cap by \$43 million (total \$493 million) (2020 dollars).

² Mobilization and contingencies includes the mobilization of construction equipment to the dam site, design and construction contingencies.

Engineering costs include design data, engineering designs, permitting, procurement, construction management, and closeout activities.

⁴ Mitigation includes environmental mitigation, monitoring, and cultural resources preservation.

Mobilization and contingencies includes the mobilization of construction equipment to the dam site, design and construction contingencies.

Engineering costs include design data, engineering designs, permitting, procurement, construction management, and closeout activities.

⁴ Mitigation includes environmental mitigation, monitoring, and cultural resources preservation.

ES.4 WHAT ARE THE MAJOR POTENTIAL RISKS AND UNCERTAINTIES ASSOCIATED WITH DAM REMOVAL?

Large dam removals involve inherent risks and uncertainties. Through the Detailed Plan and other studies, the TMT has identified four primary risks that could result in changes to the expected effects of dam removal or anticipated construction activities. Other project uncertainties, as described elsewhere in this Executive Summary, have been successfully quantified or studied to an extent that they are no longer categorized as risks. The four remaining dam removal risks are summarized below along with measures or plans to reduce the risk and uncertainty.

ES.4.1 Effects to Aquatic Species and Fisheries from Extended Downstream Sediment Transport

Downstream sediment transport could result in risks to aquatic resources beyond those already anticipated (see ES 2.1) if mitigation, engineering and/or technical difficulties during dam removal extend the reservoir drawdown period. If the planned timeline for reservoir drawdown (January 1 through February 1) is not achieved, aquatic species would be exposed to high suspended sediment concentrations (SSCs) potentially extending into critical fish migratory periods. Extended exposure to SSCs could negatively affect fish in consecutive year classes and could have corresponding effects on commercial, tribal, and recreational fisheries.

Due to the uncertainty regarding the length of time over which high SSCs would occur if a problem arose during dam removal, the exact effects on aquatic resources and on basin fisheries is not known. To reduce this uncertainty, the Definite Plan for dam removal (to be developed if there was an Affirmative Secretarial Determination) would place an emphasis on provisions, planning, and extensive preparation to ensure high SSCs associated with reservoir drawdown would not extend past March 15. Aquatic species relocation mitigation measures (briefly described in Table ES-6) could be expanded or lengthened to remove fish from effects of high SSCs if they extend beyond March 15.

ES.4.2 Cost Exceedence to a Federal DRE

The large and complex construction activities associated with removal of the Four Facilities have the potential to include unexpected changes or unforeseen events, which could result in project costs greater than those originally estimated. Also, project challenges could impede the dam removal process or extend the project timeline, and could result in the accrual of additional project costs.

Risk to a Federal DRE would occur during facilities removal if the DRE anticipated exceeding the state cost cap for dam removal but was unable to stop a portion of facilities removal due to safety considerations. Under these conditions, the Federal DRE could be incurring dam-removal expenses without a known source

of funding. As stated in the KHSA, the Federal government is not responsible for any dam removal costs. To reduce this potential risk, the DRE construction management team would utilize construction cost forecasting continuously during facilities removal to determine early whether cost overruns were likely and to give the Parties to the KHSA time to address funding issues in a timely manner.

ES.4.3 Short-term Flooding

Small flooding risks during dam removal are associated with initial reservoir drawdown and dam excavation at either Iron Gate or J.C. Boyle dams stemming from (1) an overly rapid drawdown rate resulting in embankment instability and failure, or slumping of the exposed dam face; or (2) the possibility of flows from a large event exceeding the available water bypass capacity and overtopping the earthen dam embankment during dam removal.

To address this risk, the *Detailed Plan for Dam Removal - Klamath River Dams* specifies that the embankment sections at Iron Gate and J.C. Boyle dams be removed beginning June 1, 2020, with the full removal completed by September 15, 2020. This period corresponds to the lowest river flows and would allow for the construction of coffer diversion dams to route flows around the earthen embankments greatly reducing the risk of overtopping. The *Detailed Plan for Dam Removal- Klamath River Dams* also specifies the maximum reservoir drawdown rates to reduce the chance of embankment failure.

ES.4.4 Cultural and Historic Resources

Dam removal and reservoir drawdown could affect five sites reported to be submerged in the reservoirs, as well as other unknown sites that may be submerged in the reservoirs, and any human remains associated with these sites. Culturally sensitive sites, artifacts, or human remains could be exposed when the reservoirs are drained as a result of (1) the river cutting a new channel, (2) decades of wind and wave action along the reservoirs' shores that caused localized scour, or (3) slumping of reservoir banks. Once exposed, these sites would need to be documented and protected from vandalism or looting. In addition, applicable Federal and state laws regarding cultural resources, historic preservation, and burials would be followed.

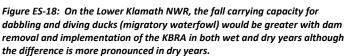
While every precaution would be taken to avoid disruption of these resources, in the case that they are discovered during dam removal and other construction activities, they pose a risk. Encountering traditional cultural properties or other culturally sensitive resources could affect the timeline and cost of dam removal.

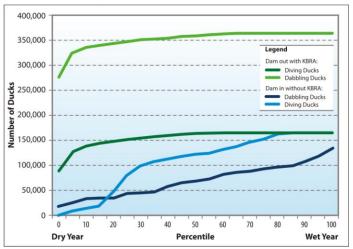
ES.5 IS FACILITIES REMOVAL IN THE PUBLIC INTEREST, WHICH INCLUDES, BUT IS NOT LIMITED TO, CONSIDERATION OF POTENTIAL EFFECTS ON LOCAL COMMUNITIES AND TRIBES?

Dam removal and KBRA implementation would provide substantial social and economic benefits to the Klamath Basin. However, dam removal would also alter or change the availability or quality of some resources and would negatively affect specific recreational resources, jobs, and real estate values closely associated with the dams and reservoirs. Provided below is a summary of the potential effects of dam removal and KBRA implementation on national, regional, tribal, and local communities, including economic and non-economic effects.

ES.5.1 Summary of Effects to National Economic Development (NED)

The National Economic Development (NED) account evaluates the net economic benefits of dam removal with implementation of the programs in KBRA. The period of analysis is 50 years, beginning in year 2012 with the first KBRA activity, and continuing through 2061. All benefits and costs were discounted back to year 2012 using the 2011 Federal water resources planning rate of 4.125 percent. Economic benefits were quantified for the following categories for the Dams In (current conditions without the KBRA) and Dams Out (dam removal with KBRA implementation) scenarios.


- 1. Commercial fishing The Four Facilities affect stocks of SONCC coho salmon ESU and Klamath River fall- and spring-run Chinook salmon. Under dam removal, coho retention would likely continue to be prohibited in the California and Oregon troll fisheries south of Cape Falcon. Troll harvest of Klamath Chinook salmon is expected to increase by an average 43 percent (2012 to 2061 time period)² with dam removal. Annual net revenue associated with total Chinook salmon harvest (all stocks) would increase under dam removal. The difference in annual net revenue between the dams remain and dam removal scenarios would be an increase of \$7.296 million (2012 dollars) or a total of \$134.5 million for the 50-year period of analysis.
- 2. In-river sport fishing The Four Facilities affect stocks for in-river recreational fisheries, including salmon, steelhead and redband trout, and the recreational sucker fishery, which has been closed since 1987. Dam removal would result in increased fish harvests, which would increase net economic values of in-river sport fishing. In-river recreational harvest of Klamath Chinook salmon is expected to increase by 8 percent (2012 to 2061 time period)². The resulting average annual net economic value would


_

These values include on average the improvement to the fisheries that would occur from 2012 to 2020 prior to dam removal with the implementation of the KBRA measures. These averages would have been larger, as reflected in Section ES.2.2, if the 42-year period following dam removal was used.

increase \$126,000 per year (2012 dollars). The incremental river sport fishery benefits for dam removal equates to a discounted present value of \$1.75 million (2012 dollars) for the 50-year period of analysis. The prospects for restoration of the recreational sucker fishery appear limited for either a dams remain or dam removal scenario. The in-river sport fishing economic value does not include likely increases in steelhead and redband/rainbow trout fisheries, which was not quantified.

- 3. Ocean sport fishing The ocean recreational harvest of Klamath Chinook salmon is expected to increase by 43 percent (2012 to 2061 time period)² under dam removal. Increased Klamath Chinook salmon availability would result in increased annual net economic values related to ocean sport fishing. Existing regulations for the recreational coho salmon fishery in California and Oregon are expected to continue in the future under both the dams remain and dam removal scenarios. The average annual increase in net economic value (for all areas combined) under a dam removal scenario is \$2.865 million (2012 dollars). The incremental ocean sport fishery benefits for dam removal equates to a discounted present value of \$52.9 million (2012 dollars) for the 50-year period of analysis.
- 4. **Irrigated agriculture** Increased water supplies during dry and drought years under the dam removal and KBRA implementation would increase gross farm revenues from irrigated agriculture, which would result in economic benefits in about one out of every 10 years. The difference in net revenue between the dams remain and dam removal scenarios would be an increase of \$29.89 million (2012 dollars) over the 50-year period of analysis.

- 5. **Refuge recreation** Dam removal and KBRA implementation are estimated to increase waterfowl abundance at refuges and hunting trips to the refuges (see Figure ES-18). Increased hunting trips would result in increased economic value related to waterfowl hunting activities. The difference in net revenue between the dams remain and dam removal scenarios would be an increase of \$4.3 million (2012 dollars) over the 50-year period of analysis.
- 6. **Nonuse values** Nonuse values were estimated using a stated preference (SP) survey. The survey collected information from households in three strata: the 12-county Klamath area; the rest of Oregon and California; and the rest of the nation. Through their stated willingness to pay for specific scenarios for ecosystem restoration within the Klamath Basin, survey respondents indicated they placed significant value on the KBRA, the KHSA, and the restoration of Klamath Basin resources. Overall, the study results indicated that the majority of respondents in the Klamath 12-county area, in the two states, and throughout the rest of the nation, are concerned

about declines of Chinook salmon and steelhead trout that return to the Klamath River, are concerned about the extinction of fish species in the Klamath Basin; and, they agree that restoration should be guided by an

action plan that includes Klamath dam removal, water sharing agreements, and basin restoration. Using a conservative methodology for determining the nonuse value associated with Klamath dam removal and restoration of Klamath Basin resources, the survey identified \$15.6 billion in nonuse benefits.

Table ES-9 summarizes estimated economic benefits for the above categories. Some economic benefits, including in-river steelhead fishing, redband trout fishing, and refuge wildlife viewing could not be readily quantified and monetized because sufficient data for an analysis was not available. Improved Klamath Basin fisheries would also provide benefits that cannot be quantified to tribes because of the expansive and integral value of fish to tribal members and tribal culture. Given the positive effects of dam removal on fishery resources and refuge recreation, it is expected that tribal benefits associated with these categories would also be positive. The NED analysis compares economic benefits and costs of the dam removal with KBRA Implementation scenario with dams remain without the KBRA (see Table ES-9). Costs include construction costs related to dam removal, site mitigation, and KBRA implementation. In addition to costs incurred from dam removal, there would be some costs savings related to lowered operation, maintenance and replacement (OM&R) costs of the Four Facilities following dam removal.

Dam removal would also result in some foregone benefits which occur when the dam removal scenario provides fewer benefits than the dams remain scenario. Foregone benefits occur in the following categories:

- 1. Hydropower The Four Facilities would generate an average of 895,847megawatt hours of electricity annually over the period 2012-2061 if the existing dams were left in place and planned efficiency upgrades were completed. Under the dam removal scenario, the Four Facilities would operate normally during 2012–2019 (8 years). After this time period, the production of electrical energy and capacity at the Four Facilities would be zero from January 1, 2020 through the end of 2061 (42-years). Under a dam removal scenario, the estimated mean present value of hydropower economic benefits was approximately \$289.2 million (2012 dollars), over the 50-year period of analysis. Relative to the dams remain scenario, this represents a mean reduction in economic benefits of approximately \$1.32 billion (2012 dollars).
- 2. Whitewater boating With dam removal, whitewater boating activity on the upper Klamath River would decrease beginning in 2020 because of the dependence of water releases from the J.C. Boyle Dam to provide sufficient and predictable flows, primarily for whitewater boating in the heavily used Hell's Corner Reach. The average number of days with acceptable flows for whitewater boating on the Hell's Corner Reach would decline by 47 percent during the five month period from May through September. The total discounted loss in economic value associated with whitewater boating recreation with dam removal is estimated at \$6.1 million for the 50-year period of analysis.

3. **Reservoir recreation** - With dam removal, the use of reservoirs for flatwater boating, fishing and other uses would be lost. The dam removal scenario results in a loss of 2.03 million total recreation days. The total discounted loss in economic value associated reservoir recreation is \$35.4 million for the 50-year period of analysis.

Table ES-9: Total Net Benefits and Costs Summary for Dam Removal and Implementation of the KBRA

Benefit and Foregone Benefit Categories	Period of Analysis (2012-2061) Discounted Value – Difference between Dams Out and Dams In (\$ millions; 2012 dollars)
Commercial Fishing (Klamath Chinook Salmon Harvest)	134.5
In-River Sport Fishing (Chinook Salmon Fishery)	1.8
Ocean Sport Fishing	52.8
Irrigated Agriculture	29.9
Refuge Recreation	4.3
Hydropower (foregone)	-1,320.1
Whitewater Boating (foregone)	-6.1
Reservoir Recreation (foregone)	-35.4
Nonuse Values ¹	
12-county Klamath Area in OR and CA	
Total Nonuse Value	67.0
Total Economic Value	217.0
Rest of OR and CA	
Total Nonuse Value	2,091.0
Total Economic Value	9,071.0
Rest of the U.S.	<u> </u>
Total Nonuse Value	13,487.0
Total Economic Value	74,983.0
Unquantified Benefits	
Tribal Commercial Fisheries	Insufficient data to quantify benefits.
Tribal Cultural Values (including ceremonial and subsistence uses)	Applying a traditional economic framework is not appropriate.
In-river Steelhead and Redband trout Sport Fishing	Insufficient data to quantify benefits
Refuge Wildlife Viewing	Insufficient data to quantify benefits
Cost Categories (Total Quantified Costs)	Period of Analysis (2012-2061) Discounted Value – Difference between Dams Out and Dams In (\$ millions; 2012 dollars)
KBRA Restoration	474.1
Facility Removal	129.1
Site Mitigation	37.7
OM&R (cost savings)	-188.9
Unquantified Costs	
Real Estate Values	Insufficient data to quantify costs
Hydropower Ancillary Services	Explicit consideration of ancillary services was outside the scope of this analysis.
Regional Powerplant Emissions	The hydropower analysis described in this document does not fully consider the effect, if any, of changing hydropower production levels on system-wide powerplant emissions or regional air quality.

The NED benefit cost analysis (BCA) indicates that the net economic benefits of Dam Removal and Implementation of the KBRA are strongly positive. For both partial and full facilities removal the NED BCA ranges from approximately nine to

one to forty-eight to one (see Table ES-10). This implies that dam removal and KBRA implementation (including the partial facilities removal option) is justified from an economic perspective.

Table ES-10: Benefit Cost Analysis Summary for Dam Removal and Implementation of the KBRA¹

	Со	sts	Ben	efits	Net Eco Ben	onomic efits	Benefit/	Cost Ratio
	Low	High	Low	High	Low	High	Low ²	High ²
Full Facilities Removal	1,772.1	1,813.6	15,868.3	84,435.4	14,054.7	82,663.3	8.7 to 1	47.6 to 1
Partial Facilities Removal	1,746.4	1,787.9	15,868.3	84,435.4	14,080.4	82,689.0	8.9 to 1	48.3 to 1

¹ The costs and benefits presented here represent quantifiable costs and benefits; there are also unquantifiable costs and benefits (as shown in Table ES-9) that are not possible to include in the calculation of total costs and benefits. The most probable dam removal costs as shown in Tables ES-7 and ES-8 were used in the economic analysis.

ES.5.2 Summary of Effects to Regional Economics (RED)

Dam removal actions have short-term and long-term positive and negative effects on jobs in the regional economy. Construction activities associated with dam removal, mitigation actions, and implementation of KBRA programs would add jobs, labor income, and economic output to the region in the short-term (2012 -2026). For example, jobs associated with KBRA implementation spending would span 15 years, jobs associated with dam removal would likely span just a single year, and jobs associated with mitigation measures would span about 8 years. Over the longer term, dam removal and KBRA programs would result in the addition of jobs in the region related to irrigated agriculture, commercial fishing, in-river sport fishing, ocean sport-fishing, and refuge recreation. Added jobs in these areas would increase regional labor income and economic output; producing a long-term positive effect on regional economic development.

Dam removal would eliminate long-term jobs related to annual operation and maintenance (O&M) expenditures associated with the Four Facilities. In addition, changes to whitewater boating opportunities and loss of open-water and flat-water recreation activities at the Klamath Hydroelectric Project reservoirs would also result in lost regional jobs.

Implementation of the KHSA and KBRA would add regional short-term and long-term jobs and would increase labor income and regional economic output. Added jobs include full time, part time, and temporary positions. Table ES-11 summarizes the changes in jobs, labor income, and regional output for the specific region modeled (color coding is used to differentiate the regions) and the timeframe of the jobs. This regional economic analysis compares two scenarios: dam removal and implementation of the KBRA, and leaving the dams in place without implementation of the KBRA. Jobs, labor income, and regional output were generated using IMPLAN, which estimates regional impacts based on the makeup of the economy at the time of the underlying IMPLAN data

Figure ES-19: Jobs and Regional Economic Output would increase in all of the five Commercial Fishing Management Areas with Dam Removal.

Low estimate (Low Benefit Estimate divided by High Cost Estimate: these estimates are based on nonuse value including recreation use benefits and forgone recreation use values). High estimate (High Benefit Estimate divided by Low Cost Estimate: these estimates are based on total economic value adjusted by removing recreation use benefits and forgone recreation use values).

(2009). It is important to note that regional impacts were analyzed by scenario specific definitions, periods of occurrence, and other factors; therefore, the potential impacts (such as jobs) should not be summed across a category or region.

The largest decrease in annual average jobs (estimated at 49) and average annual regional output (- \$5 million) associated with dam removal would occur because of reduced spending on Operation and Maintenance of the Four Facilities between 2020 and 2061 (Table ES-11). The largest increases in jobs and regional output would be associated with dam decommissioning, implementation of mitigation actions associated with dam decommissioning, implementing the KBRA programs, and the resultant improvements in agricultural (during drought years) and commercial fishing. decommissioning would result in an estimated 1,400 regional jobs and a regional output of \$163 million; these would occur during the single year of dam decommissioning in 2020. Implementing mitigation measures would result in an estimated 217 short-term jobs and regional output of \$30.86 million between 2018 and 2025; annual jobs and annual regional output would vary year by year proportionate to actual regional spending. Implementation of KBRA programs would result in about 300 annual jobs (4,600 jobs over 15 years) and \$29.6 million in average annual regional output from 2012 through 2026. Jobs and regional output estimates would also vary year by year proportionate to actual KBRA regional spending. Through the KBRA Water Program, agriculture would not decrease as markedly during drought years (which occur about once every 10 years) and would result in an estimated 70 to 695 more jobs (depending on the severity of the drought) than would occur without KBRA. The corresponding range of the estimated increase in regional output would be \$9 to \$84 million. Implementation of the two agreements would improve commercial fishing in five management areas along the Oregon and California coastlines. The three largest average annual increases would be in the San Francisco Management Area (219 jobs and \$6.6 million), Central Oregon Management Area (136 jobs and \$4.07 million), and Fort Bragg Management Area (69 jobs and \$2.41 million) (Table ES-11).

Table ES-11: Average Annual Change in Jobs (Full Time, Part Time, or Temporary), Regional Labor, Income, and Regional Output for Dam Removal and Implementation of the KBRA (by Region, Activity, and Timeframe)

miplementation of the NDNA (b) Neglon, Activity, and Innendine)	פוטוו, אננועונץ, מוום וווווק	מו מווע)			
Economic Region	Activities under Dams Out with KBRA Scenario	Regional Full Time, Part Time or Temporary Jobs - Dams Out with KBRA Scenario (Incremental Change in Jobs from Dams In Scenario)	Regional Labor Income (Incremental Change in Million \$; 2012 dollars)	Regional Output (Incremental Change in Million \$; 2012 dollars)	Timeframe ²
Klamath County OR; Siskiyou County CA	Dam Decommissioning	1,400³	09	163	2020
Klamath County OR; Siskiyou County CA	O&M	-49	-2.05	<u>.</u>	2020 – 2061
Klamath County OR; Siskiyou County CA	Mitigation	217^4 (total jobs 2018 to 2025)	10.01	30.86	2018 – 2025
San Francisco Management Area (San Mateo, San Francisco, Marin and Sonoma Counties CA)	Commercial Fishing	218	2.56	9.9	2012 – 2061
Fort Bragg Management Area (Mendocino County CA)	Commercial Fishing	69	1.05	2.41	2012 – 2061
KMZ-CA (Humboldt and Del Norte Counties CA)	Commercial Fishing	19	0.07	0.19	2012 – 2061
KMZ-OR (Curry County OR)	Commercial Fishing	11	0.06	0.13	2012 - 2061
Central Oregon Management Area (Coos, Douglas and Lane Counties OR)	Commercial Fishing	136	1.74	4.07	2012 – 2061
Klamath County OR; Siskiyou County CA	Reservoir Recreation	4-	-0.13	-0.31	2021 – 2061
Klamath County OR; Del Norte, Humboldt, and Siskiyou Counties CA	In River Sport Salmon Fishing	ဇ	0.07	0.15	2012 – 2061
KMZ-CA (Humboldt and Del Norte Counties CA)	Ocean Sport Fishing	5.5	0.18	0.48	2012 – 2061
KMZ-OR (Curry County OR)	Ocean Sport Fishing	1.2	0.02	60.0	2012 - 2061
Klamath and Jackson counties OR; Humboldt and Siskiyou counties CA	Whitewater Boating	-14	-0.43	-0.89	2021 – 2061

Table ES-11: Average Annual Change in Jobs (Full Time, Part Time, or Temporary) for Dam Removal and Implementation of the KBRA (by Region, Activity, and Timeframe)

Economic Region	Direct KBRA Activities	Regional Full Time, Part Time or Temporary Jobs - Dams Out with KBRA Scenario (Incremental Change in Jobs from Dams In Scenario)	Regional Labor Income (Incremental Change in Million \$; 2012 dollars)	Regional Output (Incremental Change in Million \$; 2012 dollars)	Timeframe ³
Klamath County OR; Siskiyou and Modoc Counties CA	Irrigated Agriculture ⁵	2027: 112 2043: 695 2045: 397 2051: 187 2059: 70	2027: 2 2043: 11 2045: 7 2051: 4 2059: 2	2027: 13 2043: 84 2045: 41 2051: 20 2059: 9	2027, 2043, 2045, 2051, 2059
Klamath County OR; Siskiyou County CA	Refuge Recreation	S	0.12	0.27	2012 - 2061
Klamath County OR; Siskiyou, Modoc, Humboldt, and Del Norte Counties CA	KBRA Fisheries Program	261	12.4	25	2012 – 2026
Klamath County OR; Siskiyou, Modoc, Humboldt, and Del Norte Counties CA	KBRA Water Resources Program	16	0.7	1.6	2012 – 2026
Klamath County OR; Siskiyou, Modoc, Humboldt, and Del Norte Counties CA	KBRA Regulatory Assurances	10	0.5	П	2012 – 2026
Klamath County OR; Siskiyou County CA	KBRA County Programs	Klamath County; \$3.2 million would increase jobs, labor income and output. Siskiyou County; \$20 million would increase jobs, labor income and output.	ŀ	l	
Klamath County OR; Siskiyou, Modoc, Humboldt, and Del Norte Counties CA	KBRA Tribal Programs	Karuk: 8 Klamath: 8 Yurok: 10	Karuk: 0.35 Klamath: 0.39 Yurok: 0.45	Karuk: 0.55 Klamath: 0.64 Yurok: 0.81	2012 – 2026

¹ It is not appropriate to add jobs across years, as the job estimates provided represent average annual changes rather than annual changes that accumulate in each year of the study period. Jobs for the Direct KBRA Activities were averaged over the 15 year timeframe and could be higher or lower in any year.

LEGEND:

drought years.

decommissioning is estimated to have an employment impact of 1,400 jobs. These jobs would start on January 1, 2020 and persist until December ² These employment impacts are anticipated to occur on the first day of the timeframe identified and persist over the period. For example, dam 31, 2020. Similarly, the loss of 49 operation and maintenance jobs would be anticipated to start on January 1, 2020.

³ Jobs created during dam removal would occur for one year in 2020.

⁵ Regional economic impacts stemming from irrigated agriculture were estimated to be equal in all years except for the years in the hydrologic model that correspond with the drought years of 1975, 1992, 1994, 2001, and 2008. The values presented are annual totals for the modeled ⁴ Jobs reported related to mitigation spending are reported as a total over the mitigation period of 2018-2025.

Klamath County OR, Siskiyou County CA
San Francisco Management Area
Fort Bragg Management Area
KMZ-CA
KMZ-CA
KMZ-OR
Central Oregon Management Area
Klamath County OR; Del Norte, Humboldt,
and Siskiyou Counties CA
Klamath and Jackson counties CA
Klamath County OR; Siskiyou and Modoc
Counties CA
Klamath County OR; Siskiyou, Modoc,
Humboldt, and Del Norte Counties CA

ES.5.3 Tribal

Dam removal and implementation of the KBRA would help protect tribal trust resources and address various social, economic, cultural, and health problems identified by the six federally recognized Klamath Basin tribes (Klamath, Karuk, Yurok, Resighini Rancheria, Quartz Valley, and Hoopa Valley) (See Table ES-12). Dam removal would have beneficial effects on water quality, fisheries, terrestrial resources, and traditional cultural practices. Primary among these are greater anadromous fish harvests for some tribes in the lower basin, a return of salmon and steelhead to the upper basin for the Klamath Tribes, and a restoration of Klamath Tribes sucker fisheries. In addition, dam removal would enhance downstream water quality and the ability of Indian tribes in the Klamath Basin to conduct traditional ceremonies other traditional and Implementation of the KBRA would provide funds to the signatory tribes (Klamath, Yurok, and Karuk) for restoration and monitoring projects which would create jobs for tribal members.

Figure ES-20: Dense summer and fall blue-green algae (Cyanobacteria) blooms in Iron Gate Reservoir produce toxic microcystin resulting in poor water quality for fish and public health posting by the State of California. Known and/or perceived concerns over health risks associated with seasonal algal toxins have resulted in the alteration of traditional cultural practices, such as gathering and preparation of basket materials and plants, fishing, ceremonial bathing, and ingestion of river water (Photo courtesy of Karuk Tribe.)

Table ES-12: Common Benefits to all Indian Tribes with Dam Removal and Implementation of the KBRA

Major Water and Aquatic Resource Benefits of Dam Removal and KBRA Implementation		
	Water Resources	
Hydrology	More natural river hydrology. Natural flushing flows would benefit aquatic species and riparian vegetation.	
Water Quality	Natural temperature regime and improved water quality would benefit aquatic life.	
Toxic Blue Green Algae	Free flowing river segments would deter conditions that lead to toxic algal blooms and reduce human health concerns.	
Aesthetics	Improvements in water quality would improve aesthetics and ceremonial opportunities that require a healthy river.	
	Aquatic Resources	
Traditional Lifestyle	Greater fisheries abundance would bolster opportunities for transmitting traditional knowledge to successive generations, including the important practice of giving fish to elders. Improved social cohesion and function among Indian populations through	
Cultural and Religious Practices	strengthened sense of tribal identity. Improved fish abundance would facilitate the tribes' ability to reinstate and continue to practice ceremonies in their historic, complete forms at the appropriate times of the year, thereby improving tribal identity.	
Standard of Living	Increased fish abundance would contribute to greater food supply and food security for the Indian population, enhancing standard of living.	
Health	Greater opportunity for healthy food consumption associated with increased subsistence fishing opportunities, which would improve overall health conditions.	

ES.5.4 Previous PacifiCorp Analyses of Relicensing versus Removal of the Four Facilities and Public Utility Commission Rulings

A prerequisite to the \$200 million (2020 dollars) customer surcharges necessary for KHSA implementation was concurrence from the California Public Utility Commission (CPUC) and the Oregon Public Utility Commission (OPUC) with PacifiCorp's conclusion that implementing the KHSA would be in the best interest of their customers and that the incremental increases were fair and reasonable. PacifiCorp's records and testimony before both commissions compared two scenarios: (1) customers' cost and risks under the KHSA dam removal, and (2) customers' cost and risks from relicensing the Four Facilities. (It is important to note that the TMT did not evaluate the potential costs or risks to PacifiCorp customers for relicensing the dams.)

PacifiCorp reported that relicensing would require implementing new mandatory flow conditions for the project (decreasing power generation by 20 percent and reducing peaking-power opportunities), constructing and operating fish passage at the dams, and addressing water-quality issues in and below the reservoirs. PacifiCorp estimated these actions would cost in excess of \$460 million (2010 dollars) in capital and operating expenses. PacifiCorp also reported that these are uncertain and uncapped costs and thus represent a substantial financial risk to its customers. For example, if fish passage measures installed at the Four Facilities were unsuccessful, upgraded facilities, altered operations, and/or dam decommissioning may be required, and these additional uncapped expenses would likely be borne by PacifiCorp customers.

In PacifiCorp's analysis of the financial impacts of dam removal, they assumed that customer costs associated with dam removal would be capped at \$172 million in 2010 dollars (or \$200 million in 2020 dollars). Implementing Interim Measures (as defined in KHSA Appendix C and D) would cost about \$79 million (2010 dollars); these costs would be largely capped and would carry only a small financial risk for its customers. In addition, PacifiCorp customers would also have to pay for replacement power after removal of the Four Facilities in 2020.

Table ES-13 provides a summary of PacifiCorp's analysis of the above two scenarios in terms of operational changes, costs, risks, and liabilities to their customers. PacifiCorp's analysis submitted to the CPUC and OPUC demonstrated that the KHSA resulted in less cost and less risk for its customers as compared to FERC relicensing, even with the inclusion of costs associated with replacement power. The CPUC concluded that if "the KHSA surcharge is not instituted....ratepayers would be exposed to an uncertain amount of costs" associated with relicensing. The OPUC concluded that the KHSA "mitigates the risks associated with decommissioning and removal of the [four] facilities for PacifiCorp, and is therefore the least risky alternative for customers compared to relicensing" (OPUC 2011). Based on PacifiCorp's analysis and testimony, both PUCs agreed with the company's analysis and approved collection of the customer surcharges necessary to fund the removal of the Four Facilities in 2020, as described in KHSA.

Table ES-13: Operations, Costs, Risks, and Liabilities for FERC Relicensing and Removal of the Four Facilities, Based on PacifiCorp Analyses

		Operations, Risks, and Liabilities	
PacifiCorp's Future Hydroelectric Project Scenario	Operations at the Four Facilities	PacifiCorp's Estimated Customer Costs	PacifiCorp Customer Risks and Liabilities
FERC Relicensing	Four Facilities continue to operate, but mandatory conditions would require construction and operation of fish passage facilities (screens and ladders), 20 percent loss of hydropower. Substantial loss of power peaking at J.C. Boyle, and requirements to remedy water temperature quality issues below Iron Gate Dam.	In excess of \$400 million in capital costs; in excess of \$60 million in O&M over a 40-year license term.	Uncapped financial liability. Costs could exceed \$460 million, particularly if fish passage proves ineffective or if water quality does not meet OR or CA state standards FERC could require PacifiCorp to decommission the facilities if it's unable to issue a new license with costs borne by PacifiCorp customers.
KHSA Removal of the Four Facilities	Continue operation under annual FERC licenses through 2019. Power generation would cease in January 2020 with transfer of the Four Facilities to a DRE. Interim Measures (Appendix C and D of KHSA) would be implemented between 2012 and 2020 to enhance flow variability, water quality, fish habitat/health, and fund specified	\$172 million for dam removal (\$200 million in 2020 dollars). Funds would be collected with a 9-year, 2 percent (or less) surcharge on OR and CA customers. Customers would be responsible for KHSA Interim Measures at \$9 million in capital costs and \$70 million in O&M and the costs	Customer financial liability for dam removal is capped at \$172 million (\$200 million in 2020 dollars). Costs for Interim Measures are largely capped at \$79 million (2010 dollars).

ES.6 OTHER SOCIAL AND ENVIRONMENTAL EFFECTS FROM DAM REMOVAL

In addition to the effects of dam removal on fisheries, national and regional economic development, tribal resources, and PacifiCorp's customers, there are several other important social and environmental resource considerations addressed in the Overview Report that will inform a determination on whether implementation of the KHSA and KBRA is in the public interest. Table ES-14 summarizes these additional resource considerations and the effects of dam removal and KBRA implementation on each.

Table ES-14: Summary of Other Social and Environmental Effects of Dam Removal and KBRA Implementation

Issue

Effect of Dam Removal/KBRA

Prehistoric and Historic Cultural Resources:

Numerous Indian tribal and early settler development sites in the Klamath River Basin are potentially eligible for inclusion on the National Register of Historic Places. These sites are part of the cultural and historic heritage of the area. Specifically, the Klamath Hydroelectric Project dams and facilities are recommended for inclusion on the National Register.

Wild and Scenic River:

The US Forest Service, BLM and the National Park Service are responsible for Klamath Wild and Scenic River (WSR) management and are required by the WSR Act to make a determination whether dam removal is consistent with its river-resource protection requirements on the two components of the Klamath WSR.

Recreation:

The Four Facilities' reservoirs (excluding Copco 2) provide recreational opportunities including whitewater boating below J.C. Boyle powerhouse, power boating, waterskiing, lake swimming, flat-water boat angling, sightseeing, camping, and wildlife viewing.

Real Estate:

Private development around Copco 1 and Iron Gate reservoirs occurred largely as a result of proximity to the reservoirs and their recreational/scenic values. Dam removal would change this important value attached to property values.

Removal of dams and associated hydroelectric facilities would permanently remove these resources from eligibility to the National Register. Additionally, dam removal could affect other sites. Consultations under Section 106 of the National Historic Preservation Act (NHPA) are being conducted and would continue, as appropriate, throughout planning and implementation if dam removal were to proceed in order to identify and protect these resources.

Federal projects such as the proposed removal of the Four Facilities are consistent with the WSRA's Section 7(a) protections when they do not "invade", or intrude within, the WSR boundary, nor "unreasonably diminish" its scenery, recreation, fish and wildlife values as they existed at the date of WSR designation.

The Oregon component of the WSR below J.C. Boyle Powerhouse would experience a loss in whitewater boating opportunities as a direct result of dam removal. Overall, dam removal would improve scenery, recreation, and fish and wildlife values associated with the Oregon and California components of the Klamath WSR.

The removal of the Four Facilities would result in a change to recreation opportunities. Open water recreation and camping at J.C. Boyle, Copco 1, and Iron Gate reservoirs would be permanently lost following dam removal. These losses could be partially replaced by other regional recreation resources. Whitewater boating would be reduced in the popular Hell's Corner Reach. Flat-water fishing opportunities would be lost at the reservoirs, while habitat improvements and dam removal would likely increase in-river fishing opportunities for salmon, steelhead and redband trout basin-wide.

Existing lake recreational opportunities and scenic quality would change following dam removal and some property owners around Copco 1 and Iron Gate reservoirs would lose their reservoir views and reservoir access. Public access to the newly created river channel would be provided, and recreational opportunities would be available on and along the river.

Scenic, recreational, and accessibility changes following dam removal would decrease the value of privately-owned parcels around Iron Gate and Copco 1 reservoirs in the near term. This decrease in value could not be quantified; a supplemental analysis is underway to provide additional information on the potential effect of reservoir removal on these property values and will include evaluations with a date of value of 2004 and 2006.

Dam removal has the potential to increase the value of property near and adjacent to the Klamath River downstream of Iron Gate Dam due to improved water quality and more robust runs of anadromous fish.

Table ES-14: Summary of Other Social and Environmental Effects of Dam Removal and KBRA Implementation

Issue

Effect of Dam Removal/KBRA

Refuges:

The Lower Klamath National Wildlife Refuge does not have a water allocation and experiences water delivery uncertainty and shortages in the critical April through October time period, particularly in dry years, which reduces wildlife species diversity and abundance.

Dam removal and KBRA implementation would allow the refuges within Reclamation's Klamath Project to have greater certainty about water allocations and flexibility in water deliveries. Full refuge needs would likely be met in 88 percent of years. Historically, full refuge water needs in the April through October period have only been met in less than 10 percent of the years. Dam removal with KBRA implementation would also define and maintain the habitat benefits of "walking wetlands" and provide the refuges revenues from lease lands. Additional water deliveries with increased predictability, would improve bird numbers.

- Waterfowl carrying capacity of fall migrating ducks would increase by 147,000 to 336,000.
- Estimated additional wetland habitat for more than 8,000 additional nongame waterbirds (shorebirds, gulls, terns, cranes, rails, herons, grebes, egrets, and ibis) in an average water year, and 20,000 in drier years.
- Greater waterfowl numbers will provide a larger and more reliable food resource base for wintering bald eagles.

Chemicals in Reservoir Sediments:

Reservoir sediments contain low levels of contaminants that needed to be evaluated to determine if they could be eroded and transported downstream without adverse impacts to humans or other biota. In addition, the impact of human exposure to sediments not eroded downstream needed to be evaluated.

Impounded sediments were generally found to contain low levels of contaminants and can be considered relatively clean. Contaminant levels do not preclude their downstream release during dam removal. A screening level evaluation found that long-term adverse effects in the downstream areas and new river channel are unlikely for humans and aquatic and terrestrial hiota

Algal Toxins:

Large algal blooms occur in Copco 1 and Iron Gate reservoirs during the summer months and produce the algal toxin microcystin; these reservoirs have posted health advisories warning against recreational use (water contact), drinking, and fish consumption. These health advisories extend to the lower Klamath River and at times, into the Klamath Estuary.

Dam removal would eliminate large, seasonal blooms of nuisance toxic algae in Copco 1 and Iron Gate reservoirs and facilitate the use of the Klamath River for multiple human health related beneficial uses, including traditional Indian cultural practices, recreation, agriculture, shellfish harvesting, and commercial, tribal, and sport fishing.

Algal toxins in the Klamath River have impaired the ability of the Klamath, Resignini Rancheria, Karuk, Hoopa, Quartz Valley and Yurok Indian tribes to use the river for cultural purposes.

Green House Gasses:

Dam removal would require power replacement in 2020 that would result in a net increase of greenhouse gas (GHG) emissions.

The Four Facilities would generate on average 909,835 MWh annually in 2020 through 2061 that would need to be replaced by other power sources if dams are removed. If PacifiCorp meets its California's Renewable Portfolio Standard (RPS) goal in 2020 of 33% renewable, the metric tons of carbon dioxide equivalent (MTCO₂e) emitted from replacement power, is approximately 451,000 MTCO₂e per year. Removal of the reservoirs would reduce these emissions by approximately 4,000 to 14,000 MTCO₂e per year (less than 1 percent) based on the reduction of methane gas emitted from reservoir bottom sediments.

Table ES-14: Summary of Other Social and Environmental Effects of Dam Removal and KBRA Implementation

Issue

Effect of Dam Removal/KBRA

Societal views on dam removal and the KBRA:

Klamath dam removal and basin restoration (KBRA) could only move forward with fiscal resources from PacifiCorp customers, California taxpayers, and US taxpayers. What value do individuals and households place on Klamath Basin fisheries recovery and restoration?

Local Ballot Measures

Local voting (November 2, 2010) results in Klamath County and Siskiyou County appear to be mixed, with a slight majority of Klamath County supporting participation in KBRA (52 %) and a large majority of Siskiyou County not supporting dam removal (79%).

Non-use Value Survey Responses

Responses to the nonuse value survey questions indicate a majority of respondents place a relatively high level of importance on improving the fisheries in the Klamath River Basin. This importance was indicated at the 12-county Klamath area level, statewide for Oregon and California, and for the rest of the nation.

In response to a question inquiring about the level of concern with declines in the number of Chinook salmon and steelhead trout that return to the Klamath River each year, the majority of respondents expressed concern.

- From the 12-county Klamath area, 73.8% expressed concern.
- For the rest of Oregon and California, 82.5% expressed concern.
- For the rest of the United States, 78.8% expressed concern.

Respondents surveyed indicated that an action plan to remove the dams and restore the basin was preferred to no-action. Noaction was defined as not implementing an agreement that includes dam removal, fish restoration, and a water sharing agreement.

- From the 12 county Klamath area, 54.7% favored an action plan
- For the rest of Oregon and California, 71.3% favored an action plan
- For the rest of the United States, 66.3% favored an action plan

Section 1 Introduction

The Klamath Hydroelectric Settlement Agreement (KHSA), signed in 2010, is a multi-party agreement that, if fully implemented, would result in the removal of four dams within the Klamath Hydroelectric Project (Federal Energy Regulatory Commission [FERC] Project No. 2082). Figure 1-1 shows the location of these four dams, which are owned by PacifiCorp: J.C. Boyle, Copco 1, Copco 2, and Iron Gate dams (collectively referred to as the Four Facilities). This report, the Klamath Dam Removal Overview Report for the Secretary of the Interior: An Assessment of Science and Technical Information (Overview Report), presents a synthesis of new scientific studies and data collection activities called for in the KHSA (Section 3.2.4), as well as other relevant existing reports. These new studies which will inform the Secretarial Determination² (see Four Questions Before the Secretary of the Interior on Dam Removal sidebar next page) regarding the removal of the Four Facilities, were done in coordination with signatories to the KHSA, other groups, and the public, as outlined in Appendix A of the KHSA. During periodic meetings, these groups provided input on plans for new studies to identify any additional data gaps and data sources, and to discuss the progress of ongoing studies.

Figure 1-1: Klamath River basin map. J.C. Boyle, Copco 1, Copco 2, and Iron Gate dams would be removed under the KHSA.

Suggested guidance for prioritized new studies and data collection needs, as well as the science process for conducting these studies, is summarized in Section 3.2.4 and Appendices A, I, and J of the KHSA. Section 3 of this report provides additional information on the science process used for the Secretarial Determination process and how new reports were reviewed.

The Secretarial Determination is the determination made by the Secretary of the Interior on the removal of the Four Facilities.

Four Questions before the Secretary of the Interior on Dam Removal

The Secretarial Determination process will make a determination on Klamath dam removal addressing the four questions below, using existing and newly developed information (Secretarial Determination). The Determination will be made in coordination with the Secretary of Commerce.

- Will facilities removal and KBRA implementation advance restoration of salmonid fisheries and other fish species in the Klamath Basin over a 50-year time frame?
- 2. What would dam removal entail; what mitigation measures may be needed; and what would these actions cost?
- 3. What are the potential risks and liabilities associated with dam removal to be considered by the entity removing the dams?
- 4. Is facilities removal and implementation of KBRA in the public interest, which includes but is not limited to consideration of potential effects on local communities and tribes?

Adapted from Appendix I of the KHSA.

Signatories of the KHSA, with the exception of the Federal government and PacifiCorp, also signed an accompanying agreement—the Klamath Basin Restoration Agreement (KBRA). The Federal government is not able to sign the KBRA until Congress passes Federal legislation authorizing the agreement. The KBRA includes interrelated plans and programs intended to benefit fisheries throughout the basin, water and power users in the upper Klamath Basin, counties, Indian tribes, and basin communities. Implementation of the KBRA is also being evaluated in this Overview Report because the KBRA would be implemented if there is an Affirmative Secretarial Determination³ on the KHSA. While some elements of the KBRA may be implemented without an Affirmative Secretarial Determination, a number of the actions and programs described in the KBRA would likely not be implemented, or would be implemented differently, if the Four Facilities remain in place with a Negative Secretarial Determination.

1.1 PURPOSE AND SCOPE OF THIS REPORT

The KHSA identified information needs and specific questions that should be addressed with new studies and analyses prior to a Department of the Interior (DOI) Secretarial Determination on Klamath dam removal (see KHSA Sections 3.2.1, 3.3.1, and 3.3.2). The sidebar on the left summarizes the major information needs and questions identified in the KHSA. These questions were expanded beyond what was originally requested in the KHSA, consistent with Section 3.2.4 and Appendix I, and now include whether dam removal as outlined in KHSA, along with implementation of programs and plans in KBRA, would be in the public interest and would advance salmonid fisheries (salmon, steelhead, and trout), as well as several other native fish populations in the basin. The KBRA programs were included in this analysis because they would proceed if the Four Facilities were removed. The timeframe for the analysis in this report was set at 50 years, 2012 through 2061.

This report provides a single, convenient, peer-reviewed summary of key findings from the Federal technical studies that were undertaken to address each of the four questions on the left, and to summarize findings from other reports and data sources relevant to these questions. This report was developed by CDM Smith (a private consulting, engineering, and science company), in coordination with the Technical Management Team (see Section 3.1) under contract with the Bureau of Reclamation, on behalf of the Department of the Interior. This report also provides findings and conclusions at a level that is understandable to readers not familiar with each of the technical disciplines (e.g., biology, engineering, and economics). Consequently, this report is not written in a standard science reporting format with a full technical description of study assumptions, methods used, data sources, and uncertainties. Its focus is on summarizing findings and conclusions from many reports and information sources, and in some cases, drawing some new, overarching conclusions. Readers wanting detailed technical discussions on the various study topics summarized in this report are directed to the cited Federal studies available on KlamathRestoration.gov. The intended audience for this report is broad,

34

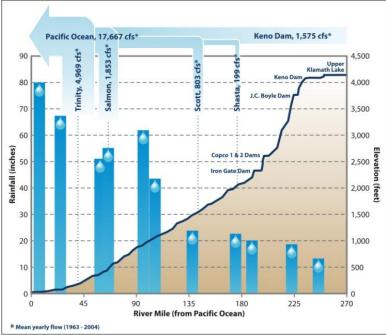
³ A determination made by the Secretary of the Interior that removal of the Four Facilities should proceed (see KHSA Section 1.4)

including the Secretary of the Interior, other government agency officials, stakeholders in the basin, the general public, and any parties interested in a concise, accessible summary of a detailed plan for Klamath dam removal and the likely effects on Klamath Basin resources and communities.

The scope of this report primarily addresses the four KHSA-derived questions. Consequently, this report should not be viewed as a comprehensive synthesis of all the literature available on the Klamath Basin. This report does, however, draw conclusions regarding (1) the likely effects of dam removal and KBRA implementation on salmonid fisheries and other fish species; (2) a detailed plan for removing the Four Facilities, mitigation actions that may be needed, and a range of costs for these actions; and (3) the risks and liabilities associated with dam removal. This report does not draw conclusions regarding whether dam removal is in the public interest; that determination will be made by the Secretary of the Interior in the Record of Decision, in coordination with the Secretary of Commerce.

An evaluation of the extent to which dam removal and implementing the KBRA is in the public interest will be informed by the information presented in Section 4.4, Analysis of Information to Inform a Decision on Whether Dam Removal and KBRA are in the Public Interest. This information includes an economic analysis of the proposed action relative to not implementing KHSA and KBRA. This analysis presents information on national net economic benefits as well as regional economic impacts. The national net economic benefits analysis includes both use and non-use values, and is based on both revealed preference and stated preference methods, as discussed in more detail in Section 4.4. This section also presents information about the likely effects of implementing the KHSA and KBRA on tribal communities, cultural resources, national wildlife refuges, Wild and Scenic River values, water quality, recreational opportunities, real-estate values, greenhouse gas emissions, and PacifiCorp customers if FERC relicensing of the Four Facilities resumed (based on an analysis by PacifiCorp). This section also provides some indicators of individuals' and households' view related to protecting declining fish populations in the Klamath Basin and whether KHSA and KBRA should be implemented. These views were obtained with surveys results collected at a national level, a two-state area (Oregon and California), and in a 12-county region in northern California and southern Oregon, as well as two advisory votes in Siskiyou County, California, and Klamath County, Oregon, that were on the November 2, 2010 ballots. The results of all the different types of analyses presented in Section 4.4 will help to inform the Secretarial Determination.

1.2 BACKGROUND


The multifaceted issues in the Klamath River Basin include water scarcity, environmental degradation, and declining fish populations, each of which adversely affect endangered species, agricultural and fishery communities, and their respective economies, as well as the way of life and health of tribal communities. These issues reached a crisis point in the early 2000s, with drastic reductions in irrigation water deliveries to farms in the upper Klamath Basin in 2001, and a major salmon die-off in the lower Klamath River in 2002 due in part

to reduced river flows that would have supported anadromous fish species. Weak Klamath River stocks resulted in the closure of commercial salmon fishing in 2006 in the Klamath Management Zone (KMZ) on the California coast, and severely curtailed commercial fishing seasons along the Oregon coast. This combination of circumstances led to the realization that the status quo was unacceptable and that the only sustainable option for solving the basin's problems would be a collaborative and mutually beneficial agreement among willing stakeholders. This realization culminated in the 2010 signing of the KHSA and KBRA in Salem, Oregon, after years of negotiation.

1.2.1 Hydrologic Setting

The headwaters of the Klamath River, unlike most other watersheds in the Pacific Northwest, originate in relatively flat open valleys before descending into a steep river canyon that intercepts inputs from multiple groundwater inflows in the upper basin⁴ and the Shasta, Scott, Salmon, and Trinity Rivers, among others, in the lower basin prior to emptying into the Pacific Ocean. The upper basin contains large, porous aquifers that store precipitation falling throughout the year and steadily release cool water into stream channels. Consequently, seasonal stream flow fluctuations in upper basin streams are relatively small. In contrast, the lower basin does not contain large, porous aquifers that temporarily store precipitation. As a result, precipitation tends to runoff more quickly in the lower basin, creating relatively "flashy" streams.

Figure 1-2: The Klamath River is a unique river system with a flat topography as its headwater with a steeper downstream portion beginning near the dams. In addition the basin receives widely varying precipitation.

Source: Western Regional Climate Center 2011, Reclamation 2011e, FERC 2007

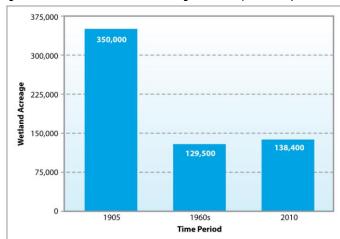
Precipitation in the watershed varies widely, ranging from an annual average of 13 inches in the open valleys in the headwaters, which are in the rain shadow of mountains to the west, to approximately 80 inches of rainfall at the river's mouth. Consequently, the amount of water running off from the upper basin, even though it is nearly equal in size to the lower basin, is relatively small, averaging less than 20 percent of the total on an annual basis, as illustrated in Figure 1-2. The steadier groundwater discharge from the upper basin, however, does provide an important source of water for the lower basin, and for fish during the dry summer and early fall months, when flows in the lower basin tributaries are low.

At its higher elevations (above 5,000 feet), the upper Klamath Basin receives rain and snow during the late fall, winter, and spring. Peak stream flows in the upper basin generally occur during snowmelt runoff in late spring and early summer. Peak runoff events in the lower basin tend to occur from

⁴ This report subdivides the Klamath Basin into upper and lower basins at Iron Gate Dam. The portion of the river and its tributaries upstream of Iron Gate Dam fall within the upper Klamath Basin and the portion downstream of the dam falls within the lower Klamath Basin.

November through March, when rainfall is highest, or when rain-on-snow events occur.

1.2.2 Historical Changes


Prior to the 1800s, the upper Klamath Basin featured a vast complex of 350,000 acres of lakes and wetlands, interconnected by sloughs and river channels. The rivers and wetlands of the Klamath Basin supported large and diverse fish populations and were an important stopover point for migratory birds and waterfowl. For thousands of years, these fish, birds, wildlife, vegetation, and other natural resources sustained many American Indian tribes in the Klamath Basin.

Settlers that moved to the western US in the 1800s and 1900s found many of these wetlands and upland areas to be attractive for farming if drained and/or if they could be supplied with irrigation water. The construction of the Bureau of Reclamation's (Reclamation's) Klamath Project began in the early 1900s to facilitate farming. Reclamation's Klamath Project, the largest water delivery system in the basin, now includes Link River and 6 other dams, 18 canals, 45 pumping facilities, and more than 500 miles of ditches that supply irrigation water to more than 200,000 acres of agricultural lands. Farms and ranches upstream from Upper Klamath Lake, on tributaries downstream of Upper Klamath Lake, and in the lower Klamath River (e.g., Scott, Shasta, and Trinity Rivers) use surface water supplies that are not part of Reclamation's Klamath Project. Some of these agricultural areas also rely on groundwater supplies.

In total, about 80 percent of the wetlands in the upper Klamath Basin and Reclamation's Klamath Project area were converted to farming and ranching activities (see Figure 1-3). Some of the wetlands were retained through establishment of the Lower Klamath National Wildlife Refuge (NWR) by President Roosevelt in 1908, creating the first waterfowl refuge in the United States and conserving critical habitat for birds along the Pacific Flyway. Other NWRs in the upper basin include Tule Lake NWR and Upper Klamath Lake NWR, both established in 1928.

The Klamath Hydroelectric Project was constructed between 1918 and 1962 and includes the East and West Side power facilities on Link River Dam, and Keno, J.C. Boyle, Copco 1, Copco 2, Iron Gate, and Fall Creek dams (see Figure 1-1)⁵. PacifiCorp⁶ developed all of these dams for the purpose of power generation. Keno Dam, however, was never converted to a hydroelectric facility. Link River dam impounds irrigation water in Upper Klamath Lake for use on Reclamation's Klamath Project. The installed maximum capacity of the entire project is

Figure 1-3: Klamath Basin wetland acreage over time (1905-2011).

Source: Akins 1970, Natural Resources Conservation Service 2007 as referenced in Larson and Brush 2010

The East and West Side power facilities and Fall Creek Dam locations are not shown on Figure 1-1 due to size constraints. They are shown on maps available from the U.S. Fish and Wildlife Service at http://www.fws.gov/yreka/HydroMaps.html.

⁶ PacifiCorp refers to the current utility and all previous owners/names.

163 megawatts (MW) and, on average, the project produces 82 MW (or 716,800 megawatt-hours [MWh] of electricity annually) (FERC 2007).

1.2.3 Existing Biological and Physical Conditions

The rich biological diversity of the Klamath Basin includes drier pine and fir forests in the upper basin and dense redwood forests in the lower basin; these forests together support more than 3,000 known plant species and more than 200 vertebrate species, including amphibians, reptiles, birds, and mammals. The wetlands and forests of the basin are a critical layover for migrating birds in the spring and fall. Nearly 80 percent of the Pacific Flyway's migratory waterfowl, shorebirds, and other waterbirds use the wetlands in the basin.

The Klamath Basin is home to 30 native fish species and is the third-largest producer of salmon in the lower United States (Institute for Fisheries Resources 2006). The basin historically produced large runs of steelhead, Chinook salmon, coho salmon, green sturgeon, eulachon, coastal cutthroat trout, and Pacific lamprey. Runs of these anadromous fish (fish that migrate from salt water to spawn in fresh water) contributed substantially to tribal, commercial, and recreational fisheries (U.S. Fish and Wildlife Service [USFWS] 1986; DOI, Klamath Basin Fisheries Task Force 1991; Gresh et al. 2000).

Fish populations in the basin have decreased from the numbers observed in the early 1900s. Steelhead populations that were thought to exceed one million fish prior to the 1900s fell to 400,000 by 1960. Similarly, coho salmon returns declined by 70 percent in the period since the 1960s (National Resource Council [NRC] 2008). Large declines have also been seen in spring and fall-run Chinook, with populations at a fraction of their former size (Moyle et al. 2008). Section 4.1, Expected Effects of Dam Removal and KBRA on Physical, Chemical, and Biological Processes that Support Salmonid and other Fish Populations, focuses on fish populations.

Multiple physical changes in the basin over the past 150 years, including operation of hydroelectric dams, overharvest of fish, wetland draining, water diversion for agricultural uses, ranching operations, mining operations, and timber harvest, have contributed to the decline of fisheries. These activities have created barriers for fish passage to hundreds of miles of streams in the upper Klamath Basin, degraded spawning and rearing habitat, and degraded water quality. The Klamath River is listed as a Clean Water Act (CWA) impaired waterway (on the "303(d)" list) in both California and Oregon due to impaired water temperature, sedimentation, pH, organic enrichment/low dissolved oxygen, nutrients, ammonia, chlorophyll-a, and microcystin (an algal toxin). The river does not currently support its fisheries-related or human health-related beneficial uses. The resulting declines in fisheries have created hardships for Indian tribes and other fishing communities. The Klamath Tribes in the upper basin have been most adversely affected by these changes due to the complete loss of their salmon fishery for over 90 years (because upstream migration has been blocked by the Klamath Hydroelectric Project dams) and the loss of their sucker fishery in Upper Klamath Lake for the past 25 years, except for ceremonial purposes.

1.2.4 Regulatory Conditions

The basin faces many regulatory challenges, including managing species listed under the Federal Endangered Species Act (ESA), the California Endangered Species Act (CESA), and/or Oregon wildlife protection laws; compliance with the CWA Total Maximum Daily Loads (TMDLs); compliance with Wild and Scenic River Act; and an ongoing Oregon adjudication process to settle water right claims.

1.2.4.1 Endangered Fish Species

Klamath Basin fish species listed under the ESA are coho salmon, bull trout, Lost River sucker, shortnose sucker, green sturgeon, and eulachon. Species listed under the CESA are coho salmon, bull trout, Lost River sucker, shortnose sucker, and longfin smelt. In addition, both the Lost River and shortnose suckers are fully protected under the California Fish and Game Code Section 5515(a)(3)(b)(4) and (6), respectively. The State of Oregon also lists the two sucker species under its endangered species regulations (ORS 496.171-496.192).

1.2.4.2 TMDLs

There are currently nine TMDLs established in the Klamath Basin. These TMDLs identify the pollutant load reductions that are necessary to meet water quality standards. The California and Oregon Klamath River TMDLs focus on reducing high water temperatures, increasing dissolved oxygen levels, and reducing nutrient concentrations and microcystin impairments in the mainstem Klamath River (North Coast Regional Water Quality Control Board [NCRWQCB] 2010a, Oregon Department of Environmental Quality [ODEQ] 2010). The Scott, Shasta, and Trinity Rivers, were addressed in separate technical analyses and TMDLs; inputs from these tributaries were included in the modeling effort conducted for the Action plan for the Klamath River Total Maximum Daily Loads addressing temperature, dissolved oxygen, nutrient, and Microcystin impairments in the Klamath River in California, and the Klamath River and Lost River implementation plan (NCRWQCB 2010a). TMDL implementation are intended to result in improvements to water quality conditions. It could take decades to meet full attainment of TMDLs. (ODEQ 2010, NCRWQCB 2010a)

1.2.4.3 Wild and Scenic River Act

The National Wild and Scenic River (WSR) System was created by Congress through the Wild and Scenic Rivers Act (WSRA) in 1968 (Public Law 90-542; 16 U.S.C. 1271 et seq.) to preserve certain rivers with outstanding natural, cultural, and recreational values in a free-flowing condition for the enjoyment of present and future generations.

The Klamath River contains two components of WSR to preserve natural, cultural, and recreational river values in a free-flowing condition. One stretch is designated in the Hydroelectric Reach below J.C. Boyle Dam to Copco 1 Reservoir and the second stretch is designated below Iron Gate Dam to the Pacific Ocean (see Section 4.4.5, Wild and Scenic River).

What is a TMDL?

A Total Maximum Daily Load (TMDL) is required by the Clean Water Act (CWA) for water bodies if their water quality does not support designated beneficial uses or meet water quality standards. A TMDL is a calculation of the maximum amount (load) of a pollutant that a water body can receive and still meet water quality standards, and an allocation of that load among the various sources of that pollutant.

⁷ Microcystin is a toxin produced by the blue-green algal species *Microcystis aeruginosa*.

1.2.4.4 Oregon Water Rights Adjudication

The Klamath Basin Adjudication is the adjudication process for pre-1909 and federal reserved water right claims for the use of surface water within the Klamath Basin. The Klamath Basin proceeding began in 1975. Claims of water use have been gathered and contests have been filed on most of those claims. Administrative law judges have been holding hearings and issuing proposed orders determining the claims and contests. The Oregon Water Resources Department (OWRD) will review those proposed orders, and any proposed settlements of contests, and submit its Findings and Order of Determination to the Klamath Circuit Court in December 2012. Water right claims have been filed by private water users. The Klamath Tribes (see Section 4.4.2, Tribal). Klamath allottees, and the United States (for the Klamath Project and for Indian and other Federal reservations of land). Once OWRD's findings are submitted to court, parties will have an opportunity to file exceptions to those findings. The Klamath Circuit Court will resolve the exceptions and issue a decree. As of July 2010, 97 percent of contests and 92 percent of the claims have reached a proposed resolution, either by issuance of an administrative law judge's proposed order or by a proposed settlement of contests (OWRD 2010).

1.2.5 Conditions Leading to the Development of the KHSA

While construction and operation of reservoirs and dams on the Klamath River facilitated development, growth, and expansion of an agricultural economy in the region and created a locally important source of hydroelectric power, it also contributed to declines in fisheries and water quality, affecting tribal resources and culture and other fishing communities. During the last decade, competing

Figure 1-4: Copco 1 Dam, powerhouse, and downstream area of the Klamath River. This facility would be removed under the KHSA.

demands led to unpredictable water deliveries to farms and NWRs, ongoing litigation over water rights, a major salmon die off, closures of commercial fishing, and a requirement for PacifiCorp to undertake an expensive and uncertain FERC relicensing of its Klamath Hydroelectric Project (described in more detail below), led stakeholders from all the affected interests to come together to develop a pair of collaborative and mutually beneficial agreements—the KHSA and the KBRA (see Section 1.2.7, Klamath Basin Restoration Agreement [KBRA]).

The Four Facilities have been operating under annual FERC licenses to produce hydropower since the original license expired in 2006. PacifiCorp filed an application with FERC for a new operating license for the Klamath Hydroelectric Project in 2004. During relicensing, several agencies, led by the National Oceanic and Atmospheric Administration Fisheries Service (NOAA Fisheries Service) and other agencies, under Section 10(a) authority of

The Federal Power Act, ⁸ recommended to FERC the removal of the Four Facilities as the preferred measure to protect declining Klamath River fisheries. Concurrently, under Section 18 authority of the Federal Power Act, the United States Department of Commerce (DOC) and DOI prescribed mandatory fishways and passage at each mainstem dam. The DOI conditioned increased flows in the largely dewatered reach of the Klamath River downstream of J.C. Boyle Dam to improve riparian habitat, whitewater recreation, and fisheries under Section 4(e) authority.

The DOC and DOI fishway prescriptions were supported by various interest groups to address declining fish harvests in the lower Klamath River and to reopen blocked fish habitat in the upper basin. The fishway prescriptions and DOI's mandatory flow conditions were challenged by PacifiCorp and others under the Energy Policy Act of 2005, in a trial-type hearing that considered disputed issues of material fact relating to the prescriptions and conditions. The resulting Administrative Law Judge decision (*In the Matter of: Klamath Hydroelectric Project, Docket* Number 2006-NOAA Fisheries Service-0001, September 27, 2006) found that the agencies met their burden of proof regarding most of the factual issues in dispute. FERC conducted environmental analysis of the proposed project, including the mandatory terms and conditions and prescriptions, in 2007.

FERC continues to wait for action from the states of California and Oregon regarding PacifiCorp's applications for Water Quality Certification for the hydroelectric project pursuant to Section 401 of the CWA. FERC cannot issue a license decision until the states issue, deny or waive a 401 certification. Requirements for 401 certification remain unresolved for relicensing the Klamath Hydroelectric Project and likely would represent a large fiscal liability and risk to PacifiCorp and its customers.

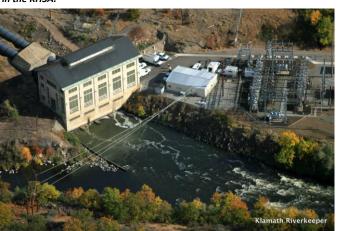
The agencies' mandatory prescriptions and conditions, requirements for a 401 certification, along with FERC's required conditions, would result in significant operational changes to the Klamath Hydroelectric Project. The prescriptions and conditions would reduce the potential power generation capacity by about 20 percent of annual generation (Scott 2010), decrease peaking operations to only one day a week, and would cause the Klamath Hydroelectric Project to operate at a net annual loss (FERC 2007). PacifiCorp estimates that it would incur relicensing capital costs (in 2010 dollars⁹) in excess of \$400 million (with the majority of costs resulting from implementation of aquatic resource protection, mitigation, and enhancement measures) and \$60 million in additional

Purpose of the Hydroelectric Project Four Facilities

The Four facilities are used exclusively by PacifiCorp for power generation. PacifiCorp allows flat water recreation on three of the reservoirs and whitewater boaters take advantage of consistent flows from the J.C. Boyle powerhouse as secondary benefits. The reservoirs provide no active flood storage however; their removal would slightly alter the peak flood flows for a distance of 18 miles below Iron Gate Dam due to flow attenuation provided by this reservoir (see Section 4.2.1.4). The Four Facilities provide no water supply for either agricultural or domestic purposes.

The Federal Power Act established the predecessor to FERC to (in addition to regulating interstate activities of power and natural gas industries) coordinate national hydroelectric facilities for all non-Federal hydropower facilities. The Act provides for cooperation between FERC and other Federal agencies, including resource agencies, in licensing and relicensing power projects. A 1986 amendment to the Act mandated that each license include conditions to protect, mitigate, and enhance fish and wildlife affected by the project. These conditions are to be based on recommendations received pursuant to the Fish and Wildlife Coordination Act (16 U.S.C. 661 et seq.) from the USFWS, NOAA Fisheries Service, state fish and wildlife agencies, and Indian tribes

⁽Federal Power Act Sec. 10(a)) potentially affected by the project.


This phrase indicates that the stated cost is presented as the value of the dollar in that year (in this case year 2010)

operations and maintenance costs over a 40-year license term (Oregon Public Utilities Commission [OPUC] 2010). PacifiCorp would be allowed to recover these costs through customer surcharges, if approved through future Public Utilities Commission (PUC) actions. Alternatively, the KHSA sets a cost cap for PacifiCorp customers in Oregon and California of \$200 million dollars (2020 dollars) for removal of the Four Facilities. Customers in Oregon would be responsible for \$184 million and customers in California would be responsible for \$16 million. The KHSA also specifies that if additional funding for dam removal were needed beyond \$200 million, up to \$250 million (in 2020 dollars) would come from California, either through the issuance of a bond or other appropriate financing mechanism. The United States government would not be responsible for any of the costs of Four Facilities removal, as described in KHSA.

The economic reality of implementing fishways and meeting CWA 401 certification at the Four Facilities, combined with the prospect of an annual loss of power revenue and the protection of prudent and reasonable utility rates for its customers, encouraged PacifiCorp to enter into collaborative discussions with other basin stakeholders to identify ways to improve basin fisheries while limiting costs and liabilities to PacifiCorp customers. PacifiCorp recognized that the terms of the KHSA "provide significant benefits to PacifiCorp's customers" (California Public Utilities Commission [CPUC] 2011). The cost cap protects customers from the uncertain costs of relicensing, litigation, and possibly dam removal that customers may be responsible for absent the KHSA. Among the benefits of the KHSA, PacifiCorp recognized "cost protection regarding dam removal cost, liability associated with dam removal, FERC relicensing costs, and possible litigation due to controversies in the Klamath Basin region regarding the operation of the dams as benefits of the KHSA" (CPUC 2011).

1.2.6 Public Utilities Commission Rulings on the KHSA

Figure 1-5: The Copco 2 powerhouse. The CPUC approved the rate increases that capped rate payer exposure at \$200 million (in 2020 dollars) as defined in the KHSA.

A prerequisite to PacifiCorp customer surcharges necessary for KHSA implementation and removal of the Four Facilities was concurrence with PacifiCorp that the KHSA was in the best interest of customers from the CPUC and OPUC. PacifiCorp was required to demonstrate to both utility commissions that the incremental ratepayer increases were fair and reasonable.

PacifiCorp's records and testimony before both commissions compared customer's risk of cost increases under the KHSA to the potential rate increases that could result from relicensing the Four Facilities. Both utilities commissions ruled that implementing the KHSA with customer surcharges resulted in the best financial outcome to PacifiCorp's customers when compared to the known costs and future risks of relicensing the Four Facilities.

1.2.7 Klamath Basin Restoration Agreement (KBRA)

The signatory parties to the KHSA recognized that dam removal would not address all of the issues within the basin and as a result, with the exception of the Federal government and PacifiCorp, signed an accompanying agreement—the KBRA. The KBRA includes interrelated plans and programs intended to benefit fisheries throughout the basin, water and power users in the upper Klamath Basin, counties, Indian tribes, and basin communities. The KBRA brought many parties together to support one another's efforts to restore fisheries in the Klamath Basin and provide for sustainable agricultural communities. The KBRA is intended to result in effective and durable solutions that address the limited availability of water to support agricultural, tribal, environmental, and fishery needs in many years and resolve the water conflicts among the many users.

Implementation of the KBRA is intended to accomplish the following:

- 1. Restore and sustain natural fish production and provide for full participation in ocean and river harvest opportunities of these fish.
- 2. Establish reliable water and power supplies for agricultural uses, communities, and NWRs in the upper Klamath Basin.
- Contribute to public welfare and sustainability of all communities through reliable water supply; affordable electricity; programs to offset potential property tax losses and address economic development issues in counties; and efforts to support tribal fishing and long-term economic selfsufficiency.

The key negotiated outcomes of the KBRA include mutually-beneficial agreements that the Klamath, Karuk, and Yurok Indian tribes will not exercise water right claims that would conflict with water deliveries to Reclamation's Klamath Project water users, and for project water users to not challenge reduced water deliveries (see Table 1-1). Mutual support for fisheries restoration and reintroduction programs, greater certainty about water deliveries at the beginning of each growing season, and agreement and assurances that parties will work collaboratively to resolve outstanding water-right contests pending in the Oregon Klamath Basin Adjudication process are the improved status quo. In addition, the KBRA includes a voluntary Water Use Retirement Program in the upper basin, three restoration projects intended to increase the amount of water storage in the upper Klamath Basin, regulatory assurances, county and tribal economic development programs, and tribal resource management programs.

Table 1-1: List of Major KBRA Programs, Plans, and Commitments

Program, Plans, and Commitments

Fisheries Programs

Fish Habitat Restoration Activities

Fisheries Restoration Phase I Plan

Fisheries Restoration Phase II Plan

Fisheries Reintroduction Plan - Phase I, Oregon

Fisheries Reintroduction Plan - Phase II, Oregon

Fisheries Reintroduction Plan - California

Fisheries Monitoring Plan

Additional Water Storage Projects:

Williamson River Delta Project

Agency Lake and Barnes Ranches Project

Wood River Wetland Restoration Project

Future storage opportunities

Water Resources Program

Water Diversion Limitations for Reclamation's Klamath Project Including National Wildlife Refuges

Water Deliveries for National Wildlife Refuges in Klamath Reclamation Project Area

Groundwater Technical Investigations

On-Project (Klamath Project) Plan

Commitments among Klamath Project irrigators, Party Tribes, and the U.S. related to Water Use/Rights

Commitments Related to Finance Issues (§§ 15.4.2., 15.4.4.)

Operation of Klamath Reclamation Project Facilities (Link River and Keno dams)

Water Use Retirement Program

Off-Project Water Settlement

Off-Project Reliance Program

Power for Water Management Program and Plans

Drought Plan

Emergency Response Plan

Climate Change Assessment

Environmental Water Management

Interim Flow and Lake Level Program

Regulatory Assurances Programs

Fish Entrainment Reduction

General Conservation Plan or Habitat Conservation Plan

County and Tribal Programs

Klamath County Economic Development Plan

California Water Bond Legislation (Siskiyou County Economic Development Funding)

Tribal Programs Fisheries and Conservation Management

Tribal Programs Economic Revitalization

Mazama Forest Project (for Klamath Tribes)

Klamath Tribes Interim Fishing Site

The United States will be a party to the KBRA if there is an Affirmative Secretarial Determination under the KHSA and Congressional authorization according to the KBRA terms. Legislation bills have been introduced in both the House (House Bill 3398, sponsored by Congressman Mike Thompson (CA)) and the Senate (Senate Bill 1851, sponsored by Senator Jeff Merkley (OR)) to authorize restoration in the Klamath Basin in accordance with the KHSA and the KBRA.

The KBRA can be viewed in its entirety at KlamathRestoration.gov.

1.2.8 Summary and Path Forward

Given development of the KHSA, the Oregon and California CWA 401 certifications are being held in abeyance pending the Secretarial Determination. The DOI and DOC mandatory prescriptions have not been incorporated as terms of the annually renewed Klamath Hydroelectric Project FERC license. If there is an Affirmative Determination, the KHSA provides for removal of the Four Facilities during a 12-month period. The agreement includes provision for either the full or partial removal of the dams, power generation facilities, water intake structures, canals, pipelines, ancillary buildings, and dam foundations to create a free-flowing river with all four dams removed by December 31, 2020.

Figure 1-6: Agriculture is one of the many resources in the Klamath Basin that would benefit from more water delivery certainty with the implementation of the KHSA and KBRA.

The parties to the KHSA recognized that removing the dams alone would not provide for a full

restoration of Klamath Basin fisheries. The adjoined KBRA was developed to build on dam removal for advancing fisheries by restoring habitat, increasing water storage, improving flow and water-quality conditions for fish, and implementing a salmon reintroduction program in the upper basin. Moreover, implementation of the KBRA would create new water and power programs, regulatory assurance programs, and programs for tribes and counties, in order to establish a new balance of water uses in the basin and the KBRA parties desire to create a durable solution to avoid continuation of rotating crises over the last decade.

This page intentionally left blank.

Section 2 Technical Input and Public Outreach Processes

Throughout this Secretarial Determination process, the TMT engaged residents of the Klamath Basin, and other interested parties, to exchange information on the progress of the scientific studies and analyses conducted as part of the project. The *Klamath Secretarial Determination Engagement and Outreach Plan* (Reclamation 2010a) summarizes how Federal agencies have interacted with various entities within the basin during this process. Figure 2-1 illustrates how different stakeholder and public groups have provided input to the development of this report. Table 2-1 provides a partial list of the meetings that were held with the various entities.

2.1 STAKEHOLDERS AND THE PUBLIC

The TMT held public informational briefings and technical workshops to gather input, ideas, and information from individual participants, and to provide updates on the progress of the project, scientific studies, and future plans.

The project website, <u>KlamathRestoration.gov</u>, was launched with the objective of informing the public about the project and providing updates on the progress of the studies being conducted. The website has been updated frequently with reports, data, peer review comments, calendar of events, maps and graphics, contacts, and other project-specific information.

2.2 INDIAN TRIBES

The Klamath Basin includes six federally recognized tribes: the Klamath Tribes, Quartz Valley Indian Community, Karuk Tribe, Hoopa Valley Tribe, Resighini Rancheria, and the Yurok Tribe. The Federal government has an obligation to consult with tribes concerning Federal actions as required by Executive Order 13175 of November 6, 2000 and Secretarial Order 3206. Throughout this process, these tribes have been consulted with, both formally and informally.

Figure 2-1: Coordination for the Secretarial Determination process as outlined in the KHSA among the TMT and the tribes, stakeholders, and public.

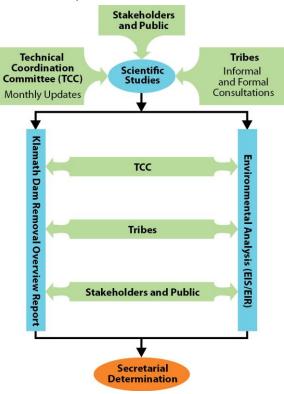


Figure 2-2: Public meetings were frequently held throughout the basin to inform stakeholders and public groups on the progress of the project.

2.3 TECHNICAL COORDINATION COMMITTEE

The Technical Coordination Committee (TCC) was created from the KHSA and is composed of the non-Federal signatories of the KHSA. As described in Appendix A of the KHSA, the primary objective of the TCC is to coordinate and exchange information and provide input as individual entities (agencies, tribes, and non-governmental organizations) into the Secretarial Determination process. The TCC typically held meetings or conference calls on a monthly basis.

Table 2-1: Partial List of Coordination Meetings with the TCC, Stakeholders, Tribes, and Public

Date	Participating Entity or Meeting Type	Location
March 23–24, 2010	Public Workshop	Klamath Falls, OR
April 1, 2010	Board of Supervisors, Siskiyou County	Yreka, CA
May 6, 2010	Stakeholder/Public Workshop	Mt. Shasta, CA
May 18, 2010	National River Management Society Conference	Portland, OR
July 7, 2010	EIS/EIR Scoping Meeting	Copco Village, CA
July 7, 2010	EIS/EIR Scoping Meeting	Yreka, CA
July 8, 2010	EIS/EIR Scoping Meeting	Klamath Falls, OR
July 9, 2010	EIS/EIR Scoping Meeting	Chiloquin, OR
July 13, 2010	EIS/EIR Scoping Meeting	Brookings, OR
July 14, 2010	EIS/EIR Scoping Meeting	Arcata, CA
July 15, 2010	EIS/EIR Scoping Meeting	Orleans, CA
July 9, 2010	Board of Commissioners, Klamath County	Klamath Falls, OR
July 16, 2010	Hoopa Valley Tribe ¹	Hoopa, CA
July 21, 2010	TCC Meeting	Redding, CA
September 3, 2010	Hoopa Valley Tribe ¹	Conference Call
September 9, 2010	TCC Meeting	Eureka, CA
September 28, 2010	Yurok Tribe ¹	Yurok Tribal Office
		Klamath, CA
September 28, 2010	Stakeholder/Public Workshop	Klamath Falls, OR
September 29, 2010	Resighini Rancheria ¹	Resighini Rancheria
		Klamath, CA
September 29, 2010	Karuk Tribe ¹	Orleans, CA
September 29, 2010	Public Informational Meeting	Eureka, CA
September 30, 2010	Quartz Valley Indian Reservation ¹	Quartz Valley Reservation Near Fort Jones, CA
September, 2010	Siskiyou County Assessor's Office (Mike Mallory)	Siskiyou County, CA
September, 2010	Siskiyou County Assessor's Office (Mike Mallory)	Siskiyou County, CA
September, 2010	Michele Duchi (Lake Shastina Real Estate Center)	Siskiyou County, CA
October 4, 2010	Klamath Tribes ¹	Chiloquin, OR
October 5, 2010	Stakeholder/Public Information Technical Workshop	Klamath Falls, OR
October 6, 2010	TCC Meeting	Klamath Falls, OR
October 13, 2010	Stakeholder/Public Information Technical Workshop	Yreka, CA
October, 2010	Siskiyou County Assessor's Office (Dan Weale)	Siskiyou County, CA
October, 2010	Siskiyou County Public Health & Community Development (Wendy Lucky)	Siskiyou County, CA

Table 2-1: Partial List of Coordination Meetings with the TCC, Stakeholders, Tribes, and Public

Date	Participating Entity or Meeting Type	Location
October, 2010	Siskiyou County Planning Department (Roland Hickel)	Siskiyou County, CA
October, 2010	Ray Singleton (Siskiyou County Broker/Appraiser)	Siskiyou County, CA
October, 2010	Kathy Hayden (Siskiyou County Agent)	Siskiyou County, CA
October, 2010	Sharon Grace (Siskiyou County Association of Realtors)	Siskiyou County, CA
November 8, 2010	Hoopa Valley Tribe ¹	Hoopa, CA
December 9, 2010	Public Information Meeting	Copco Village, CA
December 9, 2010	Public Information Meeting	Yreka, CA
December 14, 2010	TCC Meeting	Redding, CA
January 24, 2011	Klamath Tribes ¹	Chiloquin, OR
January 25, 2011	Resighini Rancheria ¹	Resighini Rancheria Klamath, CA
January 25, 2011	Hoopa Valley Tribe ¹	Hoopa, CA
January 26, 2011	Yurok Tribe ¹	Klamath, CA
January 27, 2011	Karuk Tribe ¹	Orleans, CA
January 27, 2011	Quartz Valley Indian Reservation ¹	Quartz Valley Reservation Fort. Jones, CA
February 8, 2011	Board of Supervisors, Siskiyou County	Yreka, CA
February 23, 2011	TCC Meeting	Klamath Falls, OR
March 3, 2011	Hoopa Valley Tribe ¹	Medford, OR
March 15, 2011	American Society of Civil Engineers, Southern Oregon Group	Klamath Falls, OR
March 16, 2011	Public Information Meeting	Klamath Falls, OR
April 4, 2011	Klamath Tribes ¹	Chiloquin, OR
April 5, 2011	Karuk Tribe ¹	Orleans, CA
April 6, 2011	TCC Meeting	Fortuna, CA
April 7, 2011	Resighini Rancheria ¹	Klamath, CA
April 14, 2011	Hoopa Valley Tribe ¹	Medford, OR
May 2, 2011	Hoopa Valley Tribe ¹	Medford, OR
June 15, 2011	Public Information Meeting	Orleans, CA
June 16, 2011	TCC Meeting	Ashland, OR
July 13, 2011	ESRI User Conference	San Diego, CA
August 29, 2011	Pacific States Marine Fisheries Commission	Portland, OR
September 22, 2011	Association of Environmental and Engineering Geologists	Anchorage, AK
October 18, 2011	EIS/EIR Public Hearing	Klamath Falls, OR
October 19, 2011	EIS/EIR Public Hearing	Chiloquin, OR
October 20, 2011	EIS/EIR Public Hearing	Yreka, CA
October 25, 2011	EIS/EIR Public Hearing	Orleans, CA
October 26, 2011	EIS/EIR Public Hearing	Arcata, CA
October 27, 2011	EIS/EIR Public Hearing	Klamath, CA
December 1, 2011	Copco Lake Fire Protection District	Copco Village, CA

 $^{^{\}rm 1}$ Government to government and all other tribal coordination meetings.

This page intentionally left blank.

Section 3 Data Collection Process

3.1 TECHNICAL MANAGEMENT TEAM

This Overview Report and the background information for the Secretarial Determination were developed by scientists and engineers from Federal agencies working within the Department of the Interior (DOI), the Department of Commerce (DOC), the Department of Agriculture, and the Environmental Protection Agency (USEPA). These agencies worked collaboratively with state agencies from California and Oregon through nine sub-teams covering broad topical areas of the Secretarial Determination process. The sub-teams developed and carried out scientific, engineering, and other technical studies to fill data gaps and to address the four primary questions identified in the KHSA (as presented in Section 1, Introduction). The sidebar shows a listing of the agencies responsible for undertaking and participating in these studies. A technical management team (TMT), composed of a U.S Geological Survey (USGS) program manager, project managers from Bureau of Reclamation (Reclamation) and U.S. Fish and Wildlife Service (USFWS), and the leads and co-leads of each sub-team, managed the overall process for collecting and synthesizing information for the Secretarial Determination. The TMT evaluated the quality of these investigations and final work products of the Secretarial Determination process. The TMT and the nine sub-teams conferred regularly throughout the process to assess existing information, develop new information, and apply this information to the Secretarial Determination process. The nine sub-teams are as follows:

- Economic
- Engineering, Geomorphology, & Constructability
- Environmental Compliance
- Biological

- Water Quality
- Tribal/Cultural
- Real Estate
- Recreation
- Communications

Agencies Supporting Studies for the Secretarial Determination

The following Federal and state agencies worked collaboratively under a technical management team (TMT) in synthesizing existing information and developing new information to inform the Secretary of the Interior on the four questions related to dam removal.

Department of the Interior

- Bureau of Indian Affairs
- Bureau of Land Management
- Bureau of Reclamation
- U.S. Fish and Wildlife Service
- U.S. Geological Survey

Department of Commerce

 National Oceanic and Atmospheric Administration Fisheries Service

Department of Agriculture

- U.S. Forest Service
- U.S. Environmental Protection Agency

(Continued on the Next Page)

Agencies Supporting Studies for the Secretarial Determination (cont.)

State of California

- California Department of Fish and Game
- North Coast Regional Water Quality Control Board

State of Oregon

- Oregon Department of Environmental Quality
- Oregon Department of Fish and Wildlife
- Oregon Water Resources Department

Appendix I of the KHSA outlines six "key discipline areas that need study and analysis for the Secretarial Determination". The discipline areas drove the creation of the above sub-teams, to ensure the six discipline areas received adequate attention and review during the Secretarial Determination process. The six areas are as follows:

- Engineering
- Sediment Composition, Fate, and Transport
- Water Quality

- Fisheries
- Economics
- Liability and Risk
 Management

Appendix I of the KHSA states that the Secretarial Determination study effort should concentrate on these six areas, but if other disciplines are identified during the process, they may be included. Recreation, Real Estate, and Tribal/Cultural were added as sub-teams to ensure these areas were addressed in detail. Liability and risk management issues were addressed by each of the sub-teams, as needed.

The multi-agency TMT brought a broad base of technical experience and expertise to the effort, and worked collaboratively with stakeholders and the public to identify critical information needs, design studies, and avoid duplication of effort with ongoing or completed work by other agencies or entities. As needed, the TMT or individual sub-teams engaged contractors and outside scientists and engineers to obtain individual technical input concerning ongoing studies for the Secretarial Determination. Members of the TMT were invited to a broad range of public and stakeholder meetings to provide updates on the Secretarial Determination process and receive valuable input from individual stakeholders regarding the science process.

The majority of new studies and reports (presented in Section 3.3) underwent peer review consistent with the developing agency's peer-review policy, the Office of Management and Budget's (OMB's) *Final Information Quality Bulletin for Peer Review* (OMB 2004) and the March 2009 White House Memorandum on "Scientific Integrity." The peer review process and the guiding documents are discussed in Section 3.2.1.2.

The Klamath Basin has been studied extensively for many years, and there were existing scientific reports that were potentially important to the Secretarial Determination process that had not previously undergone outside review. The TMT identified some important studies/reports (such as Stillwater 2009) and obtained an independent review to ensure that these important documents met agency standards for technical quality. This process was intended to critique existing documents and identify any limitations (PBS&J 2010) so they could be used appropriately in the Secretarial Determination process.

3.2 GUIDANCE ON SCIENTIFIC INTEGRITY AND REVIEW PROCESS

Dedication to high quality research and reliable results is an important part of the Secretarial Determination process. The focus on quality research and results was essential to meet the Federal guidelines for scientific integrity articulated in the White House Memorandum on Scientific Integrity (White House Memorandum 2009) as well as to follow the peer review requirements for individual Federal agencies and OMB's 2004 Bulletin on Peer Review (OMB 2004). In addition, the review process complies with the DOI's 2011 Policy on Scientific Integrity and satisfies the requirements for the science process in Appendix I and J of the KHSA.

The KHSA defines the scientific process for the Secretarial Determination as the "essential technical studies undertaken that will support the Secretarial Determination..." The process seeks to make "reasonable, objective, accurate, technically appropriate use of data and analysis, including existing work, and not advocate or otherwise limit the analyses and conclusions of the studies to fit a predetermined outcome. The studies developed or used, or the process used to review existing studies, will be conducted in accordance with the White House Memorandum." The KHSA (Appendix J) also states "that all new studies and analyses undertaken, or any existing data sets or studies relied upon in whole or in part, shall be of high technical quality, scientifically defensible, and of sufficient depth and scope to support fully informed decision-making by the Secretary".

The following sections describe the scientific review processes used during the Secretarial Determination process.

3.2.1 Scientific Review

To meet the standards of the KHSA, the TMT determined that the existing and new scientific information on fish populations in the Klamath Basin should be reviewed and evaluated by independent expert panels of scientists not currently involved with studies in the Klamath Basin. The purpose of the expert panels was to provide another expert review, independent of the Federal scientists, as to whether dam removal and KBRA would advance the restoration of salmonid fisheries and other fish populations. The TMT's goal for the expert panels was that they consist of independent reviewers, be transparent, add to the body of information for decision-making, open the process up to participation by a broad range of scientists and the public, and provide accessible synthesis reports of existing information.

The Secretarial Determination process developed a number of new studies that underwent peer review as specified by each agency. This Overview Report also underwent peer review under the OMB definition as a Highly Influential Scientific Assessment. Both of these peer review processes are further discussed below.

3.2.1.1 Fish Expert Panels

The independent consulting firm of Atkins (formerly PBS&J), was contracted by the USFWS to assemble four groups of experts to evaluate the potential effects of two management scenarios on four groups of anadromous and resident fish species native to the Klamath Basin. The expert panels were asked to review the existing data and to provide an independent analysis of the conditions in the basin and the likely outcome of two management scenarios. The two management scenarios analyzed were 1) dams in and no change from current management, laws, and regulations; and 2) dams out and full implementation of the KBRA. The panel's reviews were captured in four expert panel reports on the following four groups of native fish:

- Chinook salmon (Goodman et al. 2011)
- 2. Coho salmon and steelhead (Dunne et al. 2011)
- 3. Lamprey species (Close et al. 2010)
- 4. Resident trout and other resident fish (Buchanan et al. 2011)

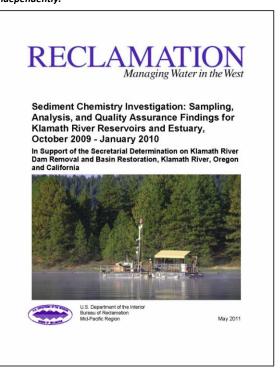
Atkins was responsible for managing the screening and selection process for the panelists, facilitating their deliberation process, ensuring that the panelists and their work products were not biased, and assisting with the preparation of their final reports. Editorial control of each final report was retained by the expert panels and Atkins to ensure an independent review and to increase the public's confidence in the objectivity and outcome of the process.

Atkins identified almost 60 potential expert panelists, with the goal of four to six experts per panel. These panelists had no working relationship with Atkins prior to the screening process. The panels contained a hydrologist, fish ecologists, population modelers, and experts on the biology of the fish species being reviewed by the panel. In addition to being experts in the field, each of the panelists also had to be able to meet the timeframe of the review process, provide review that was both credible and independent, and be free from potential or perceived conflicts of interest.

There is a large amount of existing research on the Klamath Basin that describes the physical characteristics of the basin, including water quality, temperature, geomorphology, and tributary conditions. The challenge before the panels was to evaluate the existing information and provide logical potential outcomes of the two management scenarios based on their knowledge of the species and their experience and knowledge of other river systems.

The panels did not re-examine original data or re-do analyses conducted by other researchers. The panelist assessed and interpreted the reliability and relevance of the technical information provided, evaluated its relevance to the target species, and estimated the impacts of the two management scenarios. To assist the panels, Atkins held public meetings where scientists and engineers with knowledge of the Klamath Basin could present their scientific views and finding and be available for questioning by the panels to help in their deliberations.

Each panelist was responsible for specific sections for the panel's report. The panel reviewed the individual sections and prepared a draft final report from the individually crafted sections. The draft final reports were submitted to a review panel that provided feedback and suggestions on language, coverage, and analysis to the expert panels. The panelists then responded to these comments and made changes to the draft reports, as appropriate. Each draft expert panel report was made publicly available for written comments that were then considered by the panel before finalizing their reports. All comments on the reports, and all comment responses by the panels, are included in the final reports to maximize the transparency of the process.


The panelists recognized that analyzing a program like the KBRA at such an early stage in its development was generally inadequate for quantitative scientific assessment. The assessments and the expert panel reports thus combined qualitative and quantitative expert opinions regarding the potential outcomes of the two management scenarios. The four panel reports are available on KlamathRestoration.gov.

3.2.1.2 Peer Review of Reports

The process below outlines the general elements of a peer review for a report prepared for the Secretarial Determination. Each agency has discretion as to what process of peer review is best suited for their reports and their mission, exact processes vary among agencies. The six elements below capture the general guidance each agency uses when obtaining an independent review of a report.

- 1. Two or more peer reviewers.
- 2. The lead agency, or the agency contracting for scientific work, will oversee the peer review. In some cases an independent contractor specializing in conducting scientific reviews, assisted in conducting aspects of the peer review process.
- 3. Peer reviewers were subject-matter technical experts, they were independent of the study, and they did not have a conflict of interest.
- Peer reviewer's comments, or a summary of their comments, may have been made part of the public record, at the discretion of the lead agency.
- Author(s) responded to written review comments and make appropriate changes to the report to correct technical errors and improve clarity. At the discretion of the lead agency, these author responses may have been made part of the public record.
- The agency conducting or overseeing the peer review determined when a report was final and ready for dissemination.

Figure 3-1: The <u>Sediment Chemistry Investigation: Sampling, Analysis, and Quality Assurance Findings for Klamath River Reservoirs and Estuary, October 2009-Janurary 2010</u> (Reclamation 2011n) was one of the many peer reviewed reports developed for the Secretarial Determination. Two independent experts in reservoir sediment chemistry reviewed the report. These reviewers were not associated with the TMT or the Klamath Basin. The comments were forwarded to the TMT authors without modification, and the authors responded to these reviews independently.

3.2.1.3 Peer Review of the Overview Report

The Overview Report is undergoing peer review as a Highly Influential Scientific Assessment as defined by OMB's Bulletin on peer review. "A scientific assessment is considered 'highly influential' if the agency or the Office of Information and Regulatory Affairs Administrator determines that the dissemination could have a potential impact of more than \$500 million in any one year on either the public or private sector or that the dissemination is novel, controversial, or precedent-setting, or has significant interagency interest" (OMB 2004). The rigor of the peer review process was increased for this Overview Report. A larger number of peer reviewers were selected for the panel. There will be an opportunity for the public to provide written technical comments for the peer reviewers to consider during their deliberations. Elements of the Overview Report peer review process are described below; much of the peer review process was run by an independent contractor (Atkins) specializing in conducting peer reviews.

Reviewers: The TMT nominated potential peer reviewers and Atkins contacted them to determine their availability. Six peer reviewers were selected for the panel based on expertise, experience and skills. The group of reviewers was sufficiently broad and diverse to objectively represent the relevant scientific and technical perspectives in the Overview Report, and they were independent of ongoing work in the basin and have no conflict of interest.

Information Sources: The reviewers were given copies of the Overview Report, all new reports prepared for the Secretarial Determination process, and collated written technical comments obtained from the public during the peer review process.

Peer Review Report: Peer reviewers working on the Overview Report were instructed to only analyze technical matters and avoid policy determinations. In this single report, the peer reviewers are charged with addressing whether the Overview Report accurately reflects cited reports, that it adequately covers major topic areas essential for a Secretarial Determination, that any conclusions it reaches are defensible, and that the reports is clearly presented.

Response to Peer Review Comments: The TMT will respond in writing to each written peer review comment and make changes to the final report as appropriate.

Transparency: Upon completion of the peer review process, the following will be posted on KlamathRestoration.gov: (1) the panel's peer review comments, (2) responses to these comments by the TMT, and (3) the final Overview Report.

3.3 LIST OF TECHNICAL STUDIES DEVELOPED FOR THE SECRETARIAL DETERMINATION PROCESS

Table 3-1 lists new reports prepared to fill information gaps, verify results of earlier studies, and synthesize a large body of information into single reports to inform the Secretarial Determination. These studies represent the collaborative efforts of agencies of the TMT, individual TMT sub-teams, or contractors

overseen by the TMT. The reports below are publicly available at KlamathRestoration.gov.

Table 3-1: List of Studies and Reports Developed or Reviewed for the Secretarial Determination Overview Report

Document Name

Biological Sub-Team

Compilation of Information Relating to Myxozoan Disease Effects to Inform the Klamath Basin Restoration Agreement. (Bartholomew and Foott 2010)

Compilation of Information to Inform USFWS Principals on the Potential Effects of the Proposed Klamath Basin Restoration Agreement (Draft 11) on Fish and Fish Habitat Conditions in the Klamath Basin, with Emphasis on Fall Chinook Salmon. (Hetrick et al. 2009)

Effects of the Klamath Basin Restoration Agreement to Lower Klamath, Tule Lake and Upper Klamath National Wildlife Refuges. (Mauser and Mayer 2011)

Forecasting the Response of Klamath Basin Chinook Populations to Dam Removal and Restoration of Anadromy versus No Action (Hendrix 2011)

Klamath Dam Removal Drawdown Scenario 8: Potential Impacts of Suspended Sediments on Focal Fish Species with and without Mechanical Sediment Removal. (Stillwater Sciences 2011a)

Scientific Assessment of Two Dam Removal Alternatives on Chinook Salmon. Final Report from the Expert Panel. Addendum to Final Report, July 20, 2011. (Goodman et al. 2011)

Scientific Assessment of Two Dam Removal Alternatives on Coho Salmon. Final Report from the Expert Panel. (Dunne et al. 2011)

Scientific Assessment of Two Dam Removal Alternatives on Lamprey. Final Report from the Expert Panel. (Close et al. 2010)

Scientific Assessment of Two Dam Removal Alternatives on Resident Fish. Final Report from the Expert Panel. (Buchanan et al. 2011)

Synthesis of Effects to Fish Species of Two Management Scenarios for the Secretarial Determination on Removal of the Lower Four Dams on the Klamath River. (Hamilton et al. 2011)

Using Model Selection and Model Averaging to Predict the Response of Chinook Salmon to Dam Removal. (Lindley and Davis 2011)

Tribal / Cultural Sub-Team

Current Effects of PacifiCorp Dams on Indian Trust Resources and Cultural Values in the Klamath River Basin. (DOI 2011a)

Potential Effects of Implementing the KHSA and KBRA on Trust Resources and Cultural Values. (DOI 2011b)

Economics Sub-Team

Benefit Cost and Regional Economic Development (RED) Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Bureau of Reclamation Technical Services Center, Denver CO. (Reclamation 2011a) Commercial Fishing Economics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. (NOAA Fisheries Service 2011a)

Economics and Tribal Summary Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Bureau of Reclamation Technical Services Center, Denver CO. (Reclamation 2011c)

Hoopa Valley Tribe Fishery Socioeconomics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. (NOAA Fisheries Service 2011b)

Hoopa Valley Tribe Sociocultural/ Socioeconomic Effects Analysis Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Bureau of Reclamation Technical Services Center, Denver CO. (Reclamation 2011d)

Hydropower Benefits Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. EC-2011-02. Bureau of Reclamation Technical Services Center, Denver CO. (Reclamation 2011f)

In-River Sport Fishing Economics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. (NOAA Fisheries Service 2011c)

Irrigated Agriculture Economics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Bureau of Reclamation Technical Services Center, Denver CO. (Reclamation 2011g)

Karuk Tribe Fishery Socioeconomics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. (NOAA Fisheries Service 2011d)

Karuk Tribe Sociocultural/ Socioeconomic Effects Analysis Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Bureau of Reclamation Technical Services Center, Denver CO. (Reclamation 2011h)

Klamath Tribes Fishery Socioeconomics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. (NOAA Fisheries Service 2011e)

Klamath Tribes Sociocultural/Socioeconomics Effects Analysis Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Bureau of Reclamation Technical Services Center, Denver CO. (Reclamation 2011i) Ocean Sport Fishing Economics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. (NOAA Fisheries Service 2011f)

Table 3-1: List of Studies and Reports Developed or Reviewed for the Secretarial Determination Overview Report

Document Name

Refuge Recreation Economics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. (Reclamation 2011j)

Reservoir Recreation Economics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. (Reclamation 2011)

Resighini Rancheria Fishery Socioeconomics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. (NOAA Fisheries Service 2011g)

Resighini Rancheria Tribe Sociocultural/Socioeconomics Effects Analysis Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. (Reclamation 2011m)

Whitewater Boating Recreation Economics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. (DOI 2011d)

Yurok Tribe Fishery Socioeconomics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. (NOAA Fisheries Service 2011h)

Yurok Tribe Sociocultural/ Socioeconomic Effects Analysis Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. (Reclamation 2011p)

Klamath River Basin Restoration Nonuse Value Survey Final Report (RTI International 2011)

Engineering/ Geomorphology/ Constructability Sub-Team

Detailed Plan for Dam Removal— Klamath River Dams. Klamath Hydroelectric Project FERC License No. 2082, Oregon-California. Public Review Draft (Reclamation 2011b)

Feasibility, Risk, and Uncertainty of Mechanical Sediment Removal with the Proposed Action (Full Facility Removal). (CDM and River Design Group 2011)

Hydrology, Hydraulics and Sediment Transport Studies for the Secretary's Determination on Klamath River Dam Removal and Basin Restoration. Technical Report No. SRH-2011-02. Bureau of Reclamation Technical Services Center, Denver, CO. (Reclamation 2011e) Klamath Settlement Process: Sediment Management in the Reservoirs (CDM 2011c)

Klamath River Sediment Sampling Program: Phase 1 Geologic Investigations (Volume 1 and 2) (Reclamation 2010)

Qualitative Assessment of Prolonged Facility Removal for the Klamath River Dams (Stillwater Sciences 2011)

Reservoir Area Management Plan for the Secretary's Determination on Dam Removal and Basin Restoration. Technical Report No. SRH - 2011-19, Bureau of Reclamation Technical Services Center, Denver CO. (Reclamation 2011k)

Sediment Mobilization Analysis at Little Bogus Creek and Beaver Creek for Klamath Dam Removal Studies. (Varyu and Greimann 2010)

Real Estate Sub-Team

Dam Removal Real Estate Evaluation for the US Department of the Interior (DOI 2011c)

Real Estate Report for the Secretarial Determination Overview Report (CDM 2011)

Water Quality Sub-Team

Assessment of Long Term Water Quality Changes for the Klamath River Basin Resulting from KHSA, KBRA, and TMDL and NPS Reduction Programs. (Water Quality Sub Team 2011)

Model Development and Estimation of Short-term Impacts of Dam Removal on Dissolved Oxygen in the Klamath River (Stillwater Sciences 2011b)

Quality Assurance Project Plan, Sediment Contaminant Study, Klamath River Sediment Sampling Program (Reclamation 2010)

Screening-Level Evaluation of Contaminants in Sediments from Three Reservoirs and the Estuary of the Klamath River, 2009–2011 (CDM 2011d)

Sediment Chemistry Investigation: Sampling, Analysis, and Quality Assurance Findings for Klamath River Reservoirs and Estuary, October 2009 – January 2010. (Reclamation 2011n)

Simulating Water Temperature of the Klamath River under Dam Removal and Climate Change Scenarios (Perry et al. 2011)

Section 4 Secretarial Determination Findings of Technical Studies

This Overview Report presents the analysis of two scenarios: dam removal and implementation of the KBRA to restore Klamath Basin fisheries, and for comparison, the continuation of the status quo in a dams remain without implementation of the KBRA scenario. For both scenarios, the period of analysis was 50 years (2012 through 2061). In certain instances, this Overview Report makes reference to "historic conditions"; historic conditions relate to past activities and are presented for historical context only. Major assumptions associated with these scenarios are described below.

Dams Remain Without Implementation of the KBRA

For the purposes of this analysis, the Dams remain without Implementation of the KBRA scenario (also referred to as "dams remain") would continue current operations with the dams remaining in place and PacifiCorp operating under the current annual FERC license. The existing license has no requirements for additional fish passage or implementation of the prescriptions that are currently before FERC in the relicensing process.

The USFWS issued an ESA Biological Opinion on the operations of Reclamation's Klamath Project (USFWS 2008) which remains in effect under this scenario. This Biological Opinion outlines measures to improve the habitat for the Lost River sucker and shortnose sucker affected by Reclamation's Klamath Project operations. Among other measures to protect suckers, the Biological Opinion requires that specific surface elevations of Upper Klamath Lake be maintained to meet certain criteria.

The NOAA Fisheries Service also issued a Biological Opinion to Reclamation requiring water releases from Reclamation's Klamath Project to produce specified rates of flow for the Klamath River downstream of Iron Gate Dam, based on the habitat needs of coho salmon (NOAA Fisheries Service 2010). This dam remains scenario assumes this Biological Opinion remains in effect.

A dams remain scenario would include other regulatory conditions that would affect conditions in the Klamath Basin. To improve water quality, the ODEQ and NCRWQCB cooperated to develop TMDLs for impaired water bodies within the basin. TMDLs are water pollution control plans that identify the pollutant load reductions that are necessary from point and nonpoint sources to meet water quality standards. The California and Oregon Klamath River TMDLs focus on reducing high water temperatures, increasing dissolved oxygen levels, and

reducing nutrient concentrations in the mainstem Klamath River (NCRWQCB 2010b, ODEQ 2010). See Section 4.1.1.3 for more in depth discussion on TMDLs.

Dam Removal and Implementation of the KBRA

The dam removal and implementation of the KBRA scenario (also referred to as "Dams Out with KBRA" or "Dams Out") includes the removal of the Four Facilities as described in the KHSA and would include the transfer of Keno Dam to the DOI, and the full implementation of the KBRA. This scenario would include the complete removal of these four dams and power generation facilities. Section 4.2, Dam Removal Detailed Plan and Estimated Cost also presents the costs of removing a portion of the Four Facilities (known as partial facilities removal) sufficient to achieve a free flowing river. Partial facility removal would largely have the same affects as full dam removal and is consequently not specifically discussed in detail in other sections of this report.

The result of Dam removal with KBRA would be that the Klamath River would have no dams downstream from Keno Dam. For this scenario, it is assumed that operation of Reclamation's Klamath Project and the related river flows, measured at the United States Geological Survey gauge downstream from Iron Gate Dam, would be according to the hydrologic model outputs in Reclamation (2011e).

Table 4-1: Organization of Chapter 4 of the Overview Report

Section

Question

Will dam removal and KBRA implementation advance salmonid and other fisheries of the Klamath Basin over a 50-year time frame?	4.1 - Expected Effects of Dam Removal and KBRA on Physical, Chemical, and Biological Processes that Support Salmonid and Other Fish Populations
What would dam removal entail, what mitigation measures may be needed, and what would these actions cost?	4.2 - Dam Removal Detailed Plan and Estimated Cost
What are the major potential risks and uncertainties associated with dam removal?	4.3 - Risks and Uncertainties of Dam Removal
Is dam removal and implementation of the KBRA in the public interest, which includes but is not limited to consideration of potential effects on local communities and tribes?	4.4 - Analysis of Information to Inform a Decision on Whether Dam Removal and KBRA are in the Public Interest

Four Questions of the Secretarial Determination

This section summarizes available information as well as the technical studies (see Table 3-1) completed by the TMT to address the four questions before the Secretary of the Interior (see Section 1.1, Introduction) for the two scenarios, dam removal and implementation of the KBRA and dams remain without implementation of the KBRA. Information is organized in Sections 4.1 through 4.4 (see Table 4-1) to address these four questions. However, the fourth question below regarding whether dam removal and implementation of KBRA is in the public interest is not answered in this report. Rather, this report (Section 4.4) summarizes relevant information in many subject areas that could be important for a public interest determination, including the likely effects of dam removal and KBRA on national and regional economic development, and the likely effects on tribal communities, cultural resources, national wildlife refuges, Wild and Scenic River values, water quality, recreational opportunities, real-estate values, greenhouse gas emissions, and PacifiCorp customers if dams were removed rather than relicensed by FERC (based on an analysis by PacifiCorp). Section 4.4 also provides some indicators of individual and household views regarding their level of concern for declining fish populations and fisheries in the Klamath Basin and whether dam removal and KBRA should be implemented to address these problems.

4.1 EXPECTED EFFECTS OF DAM REMOVAL AND KBRA ON PHYSICAL, CHEMICAL, AND BIOLOGICAL PROCESSES THAT SUPPORT SALMONID AND OTHER FISH POPULATIONS

Dam removal and the KBRA together embody a large scale, integrated approach to restoration of what was once a premier salmon-producing watershed on the west coast of the United States. The Klamath Basin was once the third largest producer of salmon in the United States outside of Alaska. Historically, the basin produced substantial runs of steelhead, Chinook salmon, coho salmon, green sturgeon, eulachon, coastal cutthroat trout, and Pacific lamprey, and was an important contributor to regional commercial, recreational, and tribal fisheries. Most of these species are undergoing long-term population declines (see sidebar and Table 4.1-1) caused by the cumulative effects of a variety of factors, including changing ocean conditions, hydrologic modifications, dam construction, agricultural development, timber harvesting, overfishing, and mining (DOI, Klamath River Basin Fisheries Task Force 1991).

Table 4.1-1: Declines in Klamath River Anadromous Fish

Species	Historical Level	Percent Reduction from Historical Levels (estimates of individual runs)	Source
Pacific Lamprey	Unknown	98% (Represents reduction in tribal catch per effort)	Petersen Lewis 2009
Steelhead	400,000 ¹	67% (130,000)	Leidy and Leidy 1984; Busby et al. 1994
Coho salmon	15,400– 20,000	52% to 95% (760– 9,550)	Moyle et al. 1995; Ackerman et al. 2006
Fall-run Chinook salmon	500,000 ²	92% to 96% (20,000–40,000) ³	Moyle 2002
Shasta River Chinook salmon ⁴	20,000– 80,000	88% to 95% (A few hundred to a few thousand)	Moyle 2002
Spring-run Chinook salmon	100,000 ²	98% (2,000) ²	Moyle 2002

This estimate is from 1960. Anadromous fish numbers were already in decline in the early 1900s (Snyder 1931).

Status of Anadromous Fish in the Klamath Basin

The abundance of anadromous fish populations in the basin has declined substantially compared to historical conditions. Many runs continue to decline.

Fall-run Chinook salmon: The fall run may have numbered 400,000 to 600,000 fish in the early 1900s (NOAA Fisheries Service 2009). Between 1978 and 2006, escapement averaged about 120,000 fish (Moyle et al. 2008); however, a large proportion of Klamath fall-run Chinook are now hatchery fish and naturally spawning fall-run Chinook salmon are currently on a downward trajectory (Quiñones 2011).

Figure 4.1-1: Wild (naturally spawning) Chinook salmon in the Klamath Basin are in decline.

Spring-run Chinook salmon: Historically, springrun Chinook salmon in the Klamath Basin were very important (National Research Council [NRC] 2004; Snyder 1931), and, according to some sources, substantially outnumbered fall-run Chinook salmon (Gatschet 1890; Spier 1930), but the runs have been extirpated from a large portion of their historical range (NRC 2004; Moyle et al. 2008). Total numbers from the Klamath and Trinity rivers now range from less than 300 fish to 1000 fish (Moyle et al. 2008), with the only remaining viable wild population in the Salmon River. With minimal access to appropriate habitat, the spring run will likely remain at a fraction of historical levels and could become extinct over the period of analysis (Moyle et al. 2008; Quiñones 2011).

(Continued on next page)

² Includes Klamath River and Trinity River Chinook.

³ Excludes hatchery-influenced escapement.

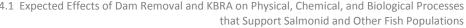
⁴ Shasta River is a subset of the overall Klamath River Chinook population.

Status of Anadromous Fish in the Klamath Basin (cont.)

<u>Coho salmon</u>: Coho salmon in the Southern Oregon Northern California Coast Evolutionarily Significant Unit (ESU) are listed as threatened under both the ESA and CESA. In addition, less than 70 percent of streams historically inhabited by coho salmon in the Klamath Basin still contain populations (NRC 2004). In the Shasta River, two of the three year classes have declined to the point that they are considered to be functionally extinct (NRC 2004). In the Trinity River, wild coho salmon stocks are estimated to be at only 4 percent of their former abundance (NRC 2004).

Figure 4.1-2: Coho salmon in the Klamath Basin are threatened with extinction.

Steelhead: Klamath Basin summer and winter steelhead populations belong to the Klamath Mountain Province ESU. In 2001, NOAA Fisheries Service determined that steelhead in the Klamath River Basin did not warrant listing under the ESA, despite acknowledging that their numbers were declining and they were in danger of extinction (Busby et al. 1994, NOAA Fisheries Service 2001).


Figure 4.1-3: Summer and winter steelhead in the Klamath Basin are in decline.

<u>Lamprey and Eulachon</u>: Anadromous lampreys in the basin appear to have declined to low levels (Larson and Belchik 1998) and eulachon are now rarely observed in the Klamath River.

<u>Green sturgeon</u>: Based on available abundance information NOAA Fisheries Service (2006) determined that green sturgeon in the Klamath River basin did not warrant listing as threatened or endangered, although uncertainties in the population structure and status led NOAA Fisheries to designate them as a Species of Concern.

As part of the Secretarial Determination studies, the TMT used a variety of analytical tools, both qualitative and quantitative, to assess the expected effects of dam removal with KBRA on salmonids and other fish populations in the Klamath River. Dam removal, subsequent reestablishment of fish migration and basin connectivity, reestablishment of stream flows that more closely mimic natural conditions in the Klamath River are expected to contribute towards restoration of the physical, chemical, and biological processes that are essential to a functional aquatic ecosystem. Improvements to the resiliency of the Klamath Basin ecosystem would likely occur from the integrated benefits of (1) increased habitat area as a result of the reconnection of 420 miles of river in the upper basin by removal of four dams (see Figure 4.1-4); (2) coordinated basin-wide improvements to aquatic habitat through active restoration; (3) a real-time water management program that incorporates key elements of the natural hydrograph; (4) an active salmon reintroduction program; and (5) a fisheries monitoring and evaluation program that supports adaptive management.

(with dams) compared to historical conditions (prior to dam construction). Map Area OREGON oregon CALIFORNIA Legend Distribution of Salmon and Steelhead in the Klamath River Basin Additional Habitat Without Dams (based on historical distribution

Figure 4.1-4: Increased salmon and steelhead distribution in the Klamath Basin under current conditions

4.1.1 Fish Population Factors Affected by Dam Removal and KBRA

The Klamath Hydroelectric Project affects fish populations by blocking migration to formerly available habitat, fragmenting populations, and altering physical and ecological processes (such as sediment transport and instream flows). The reservoirs also alter nutrient cycling, water quality, and water temperatures. In the Klamath River, removal of J.C. Boyle, Copco 1, Copco 2, and Iron Gate dams and implementation of the KBRA would have significant implications for fish populations by influencing the following key factors:

- Hydrology
- Habitat access and quality
- Water quality including water temperature
- Salmon disease

Risk to Fish Populations from Dams Remaining in Place

Based on a review of existing conditions for aquatic species, Hamilton et al. (2011) concluded that, in general, the diversity, productivity, and abundance of Federally listed and declining fish populations in the Klamath Basin under existing conditions would be severely restricted due to a number of factors, including the following.

- Continued blockage from over 420 miles of historical spawning and rearing habitat upstream of Iron **Gate Dam**
- Altered flow regimes downstream of Iron Gate Dam
- Negative impacts on redband trout due to hydropower peaking
- Lack of access to cold springs in the upper Klamath Basin that would provide thermal refugia for migrating salmonids and buffer the potential effects of climate change
- Altered geomorphic and riparian processes that limit creation and maintenance of diverse fish habitats downstream of Iron Gate Dam
- Continued poor habitat quality throughout many tributaries to the Klamath River
- Poor water quality in the Klamath River, particularly during summer
- High incidence of disease in the Klamath River for salmon downstream of Iron Gate Dam

Current, Ongoing Beneficial Activities in Relation to KBRA

Considerable efforts are underway to improve fish habitat in the Klamath Basin. Improved habitat would continue to support the recovery of salmon and steelhead stocks (NOAA Fisheries Service 2010). Once implemented, TMDLs and their associated implementation plans are expected to improve water quality (see sidebar on Beneficial Uses and TMDLs in the Klamath Basin in Section 4.1.1.3), reduce stress on salmonids from pollution, and contribute to their recovery (NOAA Fisheries Service 2010). Activities to aid recovery of salmonid populations within the Klamath River Basin would continue through flow management and habitat restoration.

These activities are included in the dams remain scenario; however, their likelihood of prompt implementation and efficacy would be reduced compared to the dam removal with KBRA scenario. This is because KBRA-related actions are complimentary to existing restoration activities, and would accelerate implementation of these restoration actions.

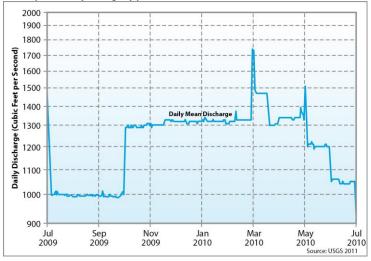
Each of these key factors is discussed below.

4.1.1.1 Hydrology

The timing of peak and base flows in the Klamath Basin downstream of Iron Gate Dam changed significantly following development of irrigated agriculture in the upper Klamath Basin, the development of the Klamath Hydroelectric Project, and the establishment of FERC minimum flows. Hamilton et al. (2011) observe that the Klamath Hydroelectric Project and operation of Reclamation's Klamath Project have truncated the range of flows historically present in the Klamath Basin. These changes have altered environmental cues that influence anadromous salmonid movements and migrations and diminished the amount and quality of habitat necessary to meet the diverse life history needs of native species (NOAA Fisheries Service 2002). Water demand from Reclamation's Klamath Project has typically been much greater during drier water years than in wetter years. These high demands for irrigation water in dry years were often in direct conflict with environmental requirements needed to maintain critical habitats for fishery resources, both in Upper Klamath Lake and the river downstream. Regardless of the outcome of the Secretarial Determination, there will be limitations on irrigation diversions based upon water availability (see Figure 4.1-5). However, the KBRA attempts to provide greater certainty for irrigators through reliable water deliveries to Reclamation's Klamath Project, and it provides more flexibility to manage flows and lake levels to respond to real-time climatic and biological conditions important to fishery resources. Under the dams remain scenario, there will be potentially more uncertainty on the water deliveries and potentially more conflict over limited water supplies. It is important to note that while the KBRA commits to implement real-time adaptive management, it is difficult to predict precisely how environmental water available under the KBRA would be managed in the future. Therefore, the

450 0 400 March - October Delivery or Allocation (taf) 350 300 0 200 150 Legend 100 ♦ Historical Mar-Oct Agriculture Delivery (1961-2000) 0 Historical Mar-Oct Agriculture Delivery (2001-2009) Dams in without KBRA Mar-Oct Agriculture Delivery 50 ▲ KBRA Mar-Oct Agriculture Delivery KBRA Mar-Oct Allocation 0 100 200 300 400 500 600 700 800 900 1000 March 1st 50% Forecast April - September Net Inflow to Upper Klamath Lake (taf)

Figure 4.1-5: Historical water deliveries to Reclamation's Klamath Project relative to the maximum water allocation that would be provided under the terms of the KBRA.


Source: Reclamation 2011e, Hetrick et al. 2009

hydrology modeling that was conducted to assist in the analysis in support of this report only represents an example of a possible outcome of implementing the water allocation¹ proposed in the KBRA.

Dam removal and KBRA implementation would alter instream flows upstream and downstream of Iron Gate Dam as compared with current conditions and those that would be expected in the future without dam removal (Hetrick et al.

2009, Hamilton et al. 2011, Reclamation 2011e). The differences in monthly average flows between dams remain and dam removal scenarios are relatively small; however, management of river flows would be greatly simplified without the management limitations that currently exist with the hydroelectric dams in place. Dam removal and implementation of the KBRA would allow for management of peak and low flows that better reflects the duration, timing, and magnitude of flows that would occur under natural conditions, with anticipated benefits to the Klamath River ecosystem. For example, with dams in place, flows downstream of Iron Gate Dam often do not vary from day to day and month to month, particularly during dry periods. As an example, for three months in the summer of 2009 daily flows remained steady around 1,000 cfs (see Figure 4.1-6) For the next five months (October 2009 through March 2010) flows were held steady around 1,300 cfs to maintain minimum in-stream flows and to optimize hydropower generation.

Figure 4.1-6: USGS graph of flows below Iron Gate Dam (July 1, 2009 through June 30, 2010). Flows below Iron Gate Dam typically do not vary from day to day or month to month, particularly during dry periods.

Source: USGS 2011

The establishment of more variable flows resulting from KBRA implementation would be expected to enhance natural processes that maintain active stream channels and transport coarser sediments, create channel bars, flush fine sediment from the streambed, scour vegetation encroaching on the channel, and reestablish riparian dynamics, such as supplying the channel with large wood through natural bank erosion and undercutting (NRC 2008). The frequency of bank full flow events is expected to increase under the KBRA because management of flows will place additional emphasis towards the need to fill Upper Klamath Lake. This would be accomplished by decreasing fall/winter flows to the river along with inclusion of operational release strategies that seek to mimic real-time inflow patterns rather than maintain constant flat line flows as has generally been the case historically under previous ESA requirements and hydropower operations. When Upper Klamath Lake is full, habitat for endangered suckers is improved and the ability to provide higher flows that

An allocation is generally referred to as a contractual or agreed upon quantity of water that could be diverted to a water user, typically over a defined period of time such as an irrigation season or contract year. A demand for water is the quantity of water that a particular user needs to supply a particular water use scenario. Assumptions about land use and information about historical management practices are often used to develop demand data for modeling purposes. Delivery is the actual amount of water diverted to the water user. This can be lower than an allocation amount or demand under certain circumstances.

mimic more natural conditions down river for the benefit of anadromous fish in the spring would also be enhanced.

With the dams in place, as Upper Klamath Lake elevations approach flood elevation limits, operational control of flows is lost as reservoirs begin to spill creating a "run of river" condition through the hydropower reach, especially when inflows into the Klamath Hydroelectric Project exceed 3,000 cubic feet per second (cfs). If dams are removed, sediment transport would no longer be interrupted, which would increase supply of spawning gravel to the hydroelectric reach and reduce the magnitude of flows required to mobilize the streambed in the future due to a reduction in substrate particle sizes. Movement of streambed sediment can disrupt the life cycle of the fish pathogen Ceratomyxa shasta (C. shasta), and it is hypothesized that more frequent bed mobilization would reduce parasitism rates, which would increase the survival of outmigrating salmon (Hamilton et al. 2011; see Section 4.1.1.4, Salmon Disease). Steady flows and a stable streambed create optimal conditions for high densities of polycheates in the reach below Iron Gate Dam that live in bottom sediments or are attached to periphyton (attached algae); these polycheates are an intermediate host for C. Shasta.

In the Klamath Hydroelectric Reach (see Figure 1-1), dam removal and KBRA flows would reestablish geomorphic and riparian channel-forming processes responsible for creation and maintenance of habitats important to anadromous and resident fish. Reestablishment of riverine habitats throughout this reach would eliminate evaporation losses and solar warming that is currently associated with the two largest reservoirs (Copco 1 and Iron Gate). Flow and water temperature regimes would return to more natural conditions both from a daily and seasonal perspective. As sediment transport within the river channel reaches equilibrium, natural channel features (point bars, alternating channels, and islands) and a functional riparian system will evolve and restore more diverse fish and wildlife habitats. Downstream of Iron Gate Dam, the dam removal with implementation of the KBRA scenario would improve water quality (see Section 4.1.1.3, *Water Quality*).

The Water Resources Program in the KBRA contains measures that would substantially change the management of water supplies for irrigation and related uses in the upper Klamath Basin (Hetrick et al. 2010 and Drought Plan Lead Entity 2011). These measures include:

- Reconnecting wetlands (such as Wood River Wetlands) to increase storage capacity in Upper Klamath and Agency lakes.
- Placing limits on the quantity of water diverted from Upper Klamath Lake and the Klamath River for use by Reclamation's Klamath Project. Water availability for irrigation would be about 10 to 26 percent less than current demand in the driest years, with water availability for irrigation increasing on a sliding scale with increasingly wet conditions. The historic pattern of agricultural water deliveries—higher in dry years than in wet years—would be reversed (see Figure 4.1-5, Hetrick et al. 2009, and Drought Plan Lead Entity 2011).

- Increasing annual inflow to Upper Klamath Lake by 30,000 acre-feet through the voluntary sale of surface water rights for irrigation, retirement of surface water rights for irrigation, or other means (the "Off-Project Program").
- Managing water in real time to allow for changing environmental and biological conditions, enabling the reintroduction of flow variability essential for riverine ecosystem functions.
- Increasing water availability for Lower Klamath and Tule Lake NWRs.
- Providing greater certainty for irrigators through reliable water deliveries to Reclamation's Klamath Project, particularly in dry years.
- Developing programs in the event of drought, emergency, groundwater depletion, and climate change.

The KBRA required development of a Drought Plan to fulfill the need for additional water management efforts in critically dry years similar in nature to those conditions that were present during the 1992 and 1994 water years. This plan was completed in July 2011. The Drought Plan established a Klamath Drought Fund, which could be used to implement relief measures in a given year, while also taking into consideration the availability of funds for subsequent years (Drought Plan Lead Entity 2011). A technical advisory team would monitor hydrological conditions and water supply in the upper Klamath Basin to allow for early detection of drought conditions, so that water would be conserved for lake, river, wildlife refuge, agricultural, and other uses. In the instances of drought and extreme drought, the KBRA provides that water and resource management actions be taken such that no Klamath Basin interest would bear an unreasonable portion of burdens imposed or the risk of loss or injury.

4.1.1.2 Climate Change Effects on the Klamath Basin

Climate change is expected to result in a wide variety of effects in the Klamath Basin. In general, climate model predictions for the Pacific Northwest and Northern California include the following (U.S. Global Climate Change Research Program [USGCRP] 2009, Salathe et al. 2010, Barr et al. 2010, Federal Highway Administration [FHWA] 2010, Oregon Climate Change Research Institute [OCCRI] 2010, Reclamation 2011m):

- Increased average air temperature
- Increased number of extreme heat days
- Changes to annual and seasonal precipitation, including diminished snow pack, more winter rain, and lower summer flows
- Increased heavy precipitation events
- Changes to annual and seasonal stream flow and groundwater levels

Water Quality Changes Due to Climate Change

Effects on water quality in the Klamath Basin due to increasing air temperatures and changing precipitation patterns under climate change will vary by location. In general, the physical, chemical, and biological processes responsible for controlling the quality of surface waters are likely to be affected; however, the timing, magnitude, and consequence of these impacts are not well understood (Lettenmaier et al. 2008, Reclamation 2011m). Impacts to water quality in the Klamath Basin may include the following (Barr et al. 2010):

- Decreased and fluctuating dissolved oxygen content from more rapid cycling of detritus.
- Increased nutrients, turbidity and organic content from increased runoff and wildfires.
- Earlier, longer, and more intense algae blooms due to warmer water temperatures and increased nutrient availability.

Figure 4.1-7: Climate change projections indicate that by the end of the 21st century, more precipitation will fall as rain than snow throughout northern California and the Pacific Northwest, affecting seasonal hydrology in the Klamath River Basin.

Vegetation Changes Due to Climate Change

In general, an increased risk of watershed vegetation disturbance is anticipated due to increased wildfire potential (Reclamation 2011m). An estimate by Barr et al. (2010) indicates that by the end of the 21st century the percentage of the Klamath Basin burned annually by wildfires will increase 11 to 22 percent compared to current levels.

Figure 4.1-8: Wildfire incidence in the Klamath Basin will increase under climate change.

Warmer winters and longer growing seasons may also increase the frequency and intensity of insect and pest attacks (Reclamation 2011m), such as those of the mountain pine beetle, and disrupt plant-pollinator life cycles. Under climate change, vegetation types may shift as conditions favoring one type (e.g., oak/madrone assemblages) are replaced by conditions favoring another type (e.g., conifer assemblages) (Barr et al. 2010). In addition, decreased soil moisture and increased evapotranspiration may result in the loss of wetland and riparian habitats (Barr et al. 2010)

Along with projected changes to air temperature, precipitation, and hydrology patterns, the above vegetation-related changes could also affect agricultural and grazing practices in the Klamath River Basin, requiring additional irrigation and/or pesticide use for cropland and livestock.

- Changes in water quality (see sidebar)
- Vegetation changes (see sidebar on next page)

The primary effects of climate change at the scale of the Klamath Basin are discussed further below, as well as the anticipated ecosystem responses to climate change under both dams remain and dam removal scenarios.

Air Temperature

Numerous climate change models predict that air temperatures in the Pacific Northwest and the Klamath Basin will increase over the next 50 to 80 years, such that by the middle of the 21st century average annual air temperatures in the basin will increase by approximately 1.1 to 2.2°C (2 to 4°F), and by the end of the century they will increase by approximately 2.2 to 3.9°C (4 to 7°F). An example set of model results is shown in Table 4.1-2. As part of efforts to identify the risks and impacts associated with current and future climate on long-term water supply in the Klamath, Reclamation predictions of Klamath Basin annual air temperature increases during the 21st century are approximately 2.8 to 3.3°C (5 to 6°F) (Reclamation 2011m), falling within the somewhat broader end-of-century range reported by other studies.

Table 4.1-2: Projected Increases in Average Annual Air Temperature

Region	Next Two Decades	Mid-21 st Century	End of 21 st Century
Pacific	+1.7 °C1	+2 to 2.8 °C ¹	+2.8 to 4.6 °C ¹
Northwest	(+3.0 °F)	(+3.6 to 5.0 °F)	(+5.1 to 8.3 °F)
Klamath Basin		+1.2 to 2 °C 2	+2.6 to 4 °C ²
		(+2.1 to 3.6 °F)	(+4.6 to 7.2 °F)

Source: ¹USGCRP 2009. ²Barr et al. 2010

Precipitation and Hydrology

Mean precipitation is also projected to change gradually from existing precipitation averages, although uncertainty is high, resulting in mixed results for precipitation projections from existing climate models. By the end of the 21st century, projections in the Klamath Basin exhibit a wide range, from an 11 percent reduction of annual precipitation levels to a 24 percent increase, depending on the climate model (see Table 4.1-3). While the change in annual precipitation projected for the Pacific Northwest may increase or decrease (Salathe et al. 2009, OCCRI 2010), the seasonal changes in precipitation type are more certain. Some winter snows will be replaced by winter rains and result in earlier and higher winter and spring (December-March) stream flows and lower late spring and summer (April-July) stream flows in the Klamath Basin (USGCRP 2009; Barr et al. 2010, Reclamation 2011m). Simulated changes in decade-mean runoff in the Klamath Basin follow this same pattern, but vary by sub-watershed (Reclamation 2011m). Projected changes to groundwater hydrology under climate change may also decrease late summer stream flows in the Klamath Basin, including alterations of the timing and amount of recharge, increases in evapotranspiration, declines in the groundwater table, and increases in pumping demand (OCCRI 2010, Reclamation 2011m). As with stream flow predictions, climate change effects on groundwater are expected to vary by sub-watershed (Reclamation 2011m).

Table 4.1-3: Projected Seasonal and Annual Changes in Precipitation

Region	Season	Next Two Decades	Mid-21 st Century	End of 21 st Century
Pacific	Winter	+3 to +5% ¹	+5 to +7% ¹	+8 to +15% ¹
Northwest	Spring	+3%.1	+3 to +5% ¹	+5 to +7% ¹
	Summer	-6% ¹	-8 to -17% ¹	-11 to -22% ¹
	Fall	+3 to +5% ¹	+5% ¹	+7 to +9% ¹
Klamath Basin	Summer		-15 to -23% ²	-3 to -37% ²
	Winter		+1 to +10% ²	-5 to +27% ²
	Annual		-9 to +2% ²	-11 to+24% ²

Source: ¹USGCRP 2009, ²Barr et al. 2010

Water Temperature

Changes to air temperatures, precipitation, and flow patterns will result in corresponding changes to water temperatures in the Klamath Basin. As discussed in Section 4.1.1.3, *Water Quality*, water temperature is a fundamental aspect of fish habitat and health, affecting the timing of migration and spawning; egg incubation and hatching; feeding and growth rates; responses to predation or susceptibility to disease; and, growth of aquatic vegetation and invertebrates. Increasing air temperatures and decreasing summer flows in the Klamath Basin would be expected to cause annual increases in water temperatures. Bartholow (2005) estimates that the basin-wide increase in water temperatures would be 0.5°C per decade, or 2.5°C over the next 50 years. This estimate is based on current conditions (i.e., dams in place); modeling conducted as part of the Secretarial Determination studies includes consideration of dam removal (Perry et al. 2011) and is discussed further below.

Ecosystem Response to Climate Change as Affected by Dams remain and Dam Removal Scenarios

Broader climate change predictions (i.e., air temperature, precipitation, general hydrology, and annual average water temperature) are generalized for the Klamath Basin such that the anticipated ecosystem response would not be appreciably different under either dams remain or dam removal scenarios. Since climate change predictions are based largely on comparisons to current conditions, ecosystem response to climate change under a dams remain scenario would be similar to the information presented above for impacts related to hydrology, water temperature, water quality, and vegetation changes.

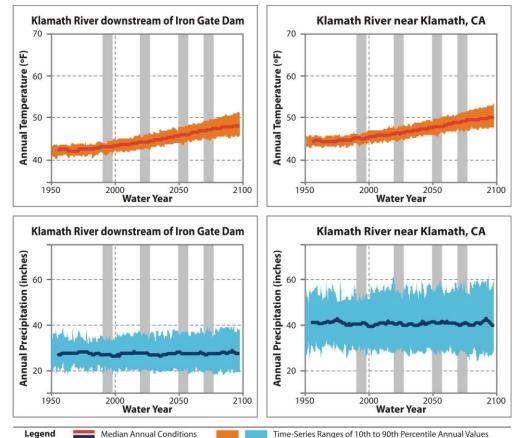


Figure 4.1-9: Simulated annual precipitation and temperature averaged over Klamath River subbasins.

Source: Reclamation 2011m

In contrast, dam removal and KBRA implementation would improve ecosystem resilience to climate change by offsetting some of the associated impacts. This is particularly important for water temperatures during the late summer/early fall. As described in Section 4.1.1.3, Water Quality, dam removal would increase spring water temperatures by approximately 1 to 2.5°C (1.8 to 4.5°F) and decrease late summer/early fall water temperatures by approximately 2 to 10°C (3.6 to 18°F), returning approximately 160 miles of the Klamath River, from J.C. Boyle Reservoir (RM 224.7) to the Salmon River (RM 66), to a more natural thermal regime. The return of cooler water temperatures during the late summer and early fall would more closely mimic natural daily and seasonal conditions favorable for rearing, migration, spawning, and incubation for anadromous salmonids, particularly fall run Chinook salmon. This effect would begin immediately upon removal of the dams. In the longer-term (i.e., 50 years into the future), modeling efforts including the effects of climate change indicate that removal of the reservoirs would result in up to a 4°C (7.2°F) decrease in late-summer/fall water temperatures immediately downstream of Iron Gate Dam (Perry et al. 2011) (see also Section 4.1.1.3, Water Quality). A decrease in water temperatures during this critical period is expected to moderate the long-term anticipated stream temperature increases due to climate change $(1-3^{\circ}C [1.8-5.4^{\circ}F])$.

As part of the expert panel review process for the Secretarial Determination, the

Coho salmon and Steelhead Expert Panel stated that dam removal would also provide thermal refuge from generally increasing water temperatures under climate change by allowing fish to access mainstem cold groundwater springs and spring-dominated tributaries in the upper Klamath Basin (Dunne et al. 2011). Water temperatures in these groundwater areas will be buffered from the effects of climate change (Hamilton et al. 2011). Similarly, the Chinook Expert Panel stated that dam removal offers greater potential than current conditions to improve habitat and water quality conditions for fish and would help them to better tolerate climate change (Goodman et al. 2010). As described in Section 4.1.1.3, *Water Quality*, water temperatures in the Keno Reach (including Lake Ewauna) would still be overly warm during summer and fall months.

Dam removal with KBRA implementation would expand floodplain and riparian wetland habitat throughout the Klamath Basin and allow the river system to better accommodate projected changes in seasonal precipitation, including an increased frequency of heavy precipitation events from climate change (Dinse et al. 2009). This would decrease the potential for greater flooding frequency and severity anticipated under climate change. Relative to historical conditions, implementation of the KBRA Drought Plan would

help to offset diminished flow during summer dry periods, which may occur more frequently and with more intensity and duration under climate change. Dam removal and KBRA implementation would also allow sediment budgets to move toward natural background conditions, increasing the mobility of the river bed material downstream of the dams and increasing its habitat value. Re-vegetation of sensitive areas in the watershed would eventually contribute new large woody debris to stream courses, increasing habitat complexity and improving habitat quality for aquatic species (Figure 4.1-10). Further, the removal of the reservoirs would eliminate large quiescent surface waters that are subject to relatively higher warming, evaporation, and incidence of toxic algae blooms; all of which would otherwise be exacerbated under future climate change conditions.

Overall, dam removal with KBRA implementation would improve ecosystem resilience to climate change by offsetting a variety of anticipated impacts such as decreased summertime flow, increased water temperature, and negative effects on water quality, and would therefore be a benefit to aquatic species in the Klamath Basin. In particular, dam removal would moderate anticipated increases in water temperatures immediately downstream of Iron Gate Dam by returning the mainstem river to relatively cooler natural temperatures during the critical late summer/early fall period and would restore fish access to cool water springs and tributaries upstream of the dam, providing long-term refuge from increases in water temperatures throughout the Klamath Basin.

Figure 4.1-10: Re-vegetation projects under KBRA would help to replace large woody debris in riparian zones, improving fish habitat and ecosystem resilience to climate change.

Figure 4.1-11: Map of the Klamath River indicating the rivermile markers.

4.1.1.3 Habitat Access and Quality

Iron Gate Dam at river mile (RM) 190 (see Figure 4.1-11) blocks access to upper Klamath Basin for three anadromous salmonid species and Pacific lamprey. Prior to the construction of Iron Gate Dam in 1962, the construction of Copco 1 Dam in 1918 was the first structure to form a barrier to anadromous fish migration.

Historically, the Klamath Basin upstream of Iron Gate Dam provided spawning and rearing habitat for large populations of salmon and steelhead (Snyder 1931; FERC 1990). Based on the historical distribution of anadromous fish in the basin (Hamilton et al. 2005, Butler et al. 2010) and an assessment of the current conditions of habitat upstream of Iron Gate Dam (Huntington 2006), there are over 420 stream miles of habitat upstream of this migration barrier (see Figure 4.1-4). Within the Klamath Hydroelectric Reach, dam would allow removal anadromous salmonids to gain access to approximately 81 miles of additional suitable riverine, side channel, and tributary habitat (Administrative Law Judge 2006; Cunanan

2009). Anadromous fish would also gain access to historical habitats along the mainstem Klamath River upstream of J.C. Boyle Dam, as well as Upper Klamath Lake and tributaries to Upper Klamath Lake, including the Sprague, Williamson, and Wood Rivers (Hamilton et al. 2005). Overall, there would be a potential increase in access to 49 significant tributaries in the upper Klamath Basin (Huntington 2006). In some locations, various factors (e.g., diversions, livestock grazing, and loss of riparian vegetation) may limit use by salmonids; the KBRA is aimed at improving the quality of these habitats.

Figure 4.1-12: Dam removal would increase available rearing habitat upstream of Iron Gate Dam including area like this, in the Wood River upstream of Upper Klamath Lake. (Photo courtesy of Thomas Dunklin)

In addition to increasing the quantity of available habitat for fish, dam removal would provide access to unique habitat features upstream of Iron Gate Dam (see Figure 4.1-13 and Table 4.1-4). These include coldwater springs and largely groundwater fed tributaries that would provide thermal refugia during summer months (Dunne et al. 2011; Goodman et al. 2011; Hamilton et al. 2011) and resilience to the potential future effects of climate change (see Section 4.1.1.3, Water Quality). Downstream of Iron Gate Dam, the most notable improvements in habitat quality for fish populations from dam removal and implementation of the KBRA would include modifying the hydrograph to more closely match natural seasonal flows (Hetrick et al. 2009); increasing spawning habitat (FERC 2007) through restoring gravel recruitment and reestablishing a mobile streambed downstream of the dam (Varyu and Greimann 2010); increasing habitat complexity through riverine processes that create point bars, islands, and side channels; enhancing tributary habitat; improving dissolved oxygen and pH conditions; and reducing the incidence of disease (see Section 4.1.1.4, Salmon Disease).

Figure 4.1-13: Dam removal would also provide access to cold water tributaries upstream of the Four Facilities (Tecumseh Springs).

Table 4.1-4: Estimated groundwater discharge (springs) into upper Klamath River systems

/		
River System	Section	Groundwater Flow (cfs)
Lower Williamson River	Mouth of Williamson River	350
and tributaries	up to Kirks Reef	
Wood River and tributaries	Crooked Creek Confluence to headwaters	490
Sevenmile Creek and	Crane Creek Confluence to	90
tributaries	headwaters	
Sprague River	South Fork Sprague to	202
	Sprague River	
Upper Klamath Lake	Springs in Upper Klamath Lake Including Malone, Crystal, Sucker, and Barclay	350
Klamath River	Keno Dam To J.C. Boyle Powerhouse	285
Klamath River and Fall	J.C. Boyle Powerhouse to	128
Creek	Iron Gate Dam	
Total		1,895

Source: Buchanan et al. 2011; USGS 2010

Beneficial Uses and TMDLs in the Klamath Basin

Section 303(d) of the CWA requires states to identify water bodies that do not meet established water quality objectives and are not supporting designated beneficial uses. These water bodies are considered to be "impaired" with respect to water quality. The Klamath River is included on the 303(d) lists for both California and Oregon and does not meet the following fisheries-related beneficial uses:

- Cold Freshwater Habitat
- Warm Freshwater Habitat
- Rare, Threatened, or Endangered Species
- Migration of Aquatic Organisms
- Spawning, Reproduction, and/or Early Development
- Estuary Habitat
- Marine Habitat

Numerous other beneficial uses related to aesthetics, cultural, agricultural, commercial, water supply, navigation, recharge, and recreation are also established, and in many cases they are impaired for the Klamath River (see Section 4.4.10, *Algal Toxins* for additional discussion of beneficial uses).

Nine pollutant total maximum daily loads (TMDLs), which are basin-wide waterbody-specific water quality improvement plans, have been established to protect and restore impaired beneficial uses in the Klamath River and its tributaries by decreasing summer and fall water temperatures, nutrients, chlorophyll-a, algal toxins, and pH, and by increasing summer and fall dissolved oxygen concentrations.

(continued on next page)

It is anticipated that implementation of the KBRA would further improve habitat access and quality for other native aquatic species throughout the Klamath Basin, excluding the Trinity River Basin upstream of its confluence with the Klamath River which has a separate program and funding for habitat restoration (the Trinity River Restoration Plan). The KBRA provides for development of plans to reintroduce anadromous salmonids into the upper Klamath Basin, excluding the Lost River or its tributaries and the Tule Lake Basin. KBRA programs would also improve water quality; increase the amount of water available to improve instream flows and maintain the elevation of Upper Klamath Lake; and provide specific allocations and delivery obligations for water to the Lower Klamath and Tule Lake NWRs.

4.1.1.4 Water Quality

Multiple water quality constituents important to fish health would be affected by dam removal, KBRA implementation, and associated regulatory-mandated programs (i.e., TMDLs [see sidebar] and non-point source reduction programs) in support of the CWA. Immediately following dam removal, water temperature, algal toxins, dissolved oxygen, and pH would improve downstream of the current location of Iron Gate Dam and throughout the entire hydroelectric reach. Over subsequent decades, additional improvements are expected elsewhere as KBRA restoration activities are implemented (Water Quality Sub-team [WQST] 2011). In general, improvements to water quality in Upper Klamath Lake and the Klamath River under a dam removal with KBRA implementation scenario would more fully support fish health and the numerous designated beneficial uses associated with fish.

Water Temperature

Water temperature is a fundamental aspect of fish habitat and health, affecting the timing of migration and spawning; egg incubation and hatching; feeding and growth rates; responses to predation; and susceptibility to disease. Throughout the mainstem Klamath River, water temperatures can be warm in the summer (>20°C [68 °F] with peak values >25°C [>77°F]; Kirk et al. 2010, NCRWQCB 2010b). With dam removal, groundwater springs upstream of Iron Gate Dam would provide cool water refugia for fish during summer months, as well as winter water temperatures conducive to the growth of reintroduced salmonids (Hamilton et al. 2011). As described above in Section 4.1.1.3, access to groundwater habitat areas would help buffer the negative impacts of climate change and contribute to the resilience of salmonid populations.

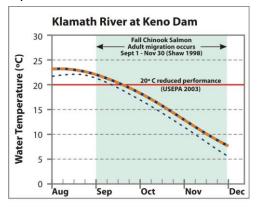
The KBRA includes restoration measures that would also improve water temperatures in the upper Klamath Basin. Improved streamside shading under Phases I and II of the Fisheries Restoration Plan would decrease summer and fall water temperatures, and the KBRA Water Diversion Limitations, Water Use Retirement Program, and Interim Flow and Lake Level Program would reduce surface water withdrawals in tributaries to Upper Klamath Lake, increasing stream flows and decreasing summer and fall water temperatures. While these measures would improve water temperatures in the lake's tributaries, reduced water temperatures in most open water areas of Upper Klamath Lake are not anticipated (Buchanan et al. 2011), nor are temperature reductions in the

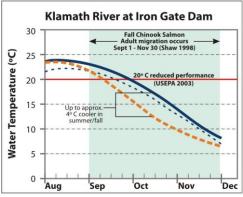
downstream Keno Impoundment (including Lake Ewauna), which receives discharge from Upper Klamath Lake.

Current operations at J.C. Boyle Powerhouse divert relatively warm reservoir discharges away from the J.C. Boyle Bypass Reach, leaving cold groundwater to dominate the flows. This allows water temperatures to be maintained between at 5-15°C (41-59°F) (Bureau of Land Management [BLM] 2003; Kirk et al. 2010) in this short reach throughout the year, and provides summer and fall coldwater refugia for fish (PacifiCorp 2006). Removing J.C. Boyle Dam and restoring the use of the main channel as the primary conduit for flow would result in a mixing of upstream surface water with the springs and result in warmer water temperatures in this reach from spring to fall. The Resident Fish Expert Panel calculated that the dilution of natural groundwater in the J.C. Boyle Bypass Reach into the Klamath River would make up 30–40 percent of the total summer flow. With dam removal, they concluded that these groundwater springs would continue to have a positive effect on water quality and temperature and enhance rearing and harvest for redband/rainbow trout (Buchanan et al. 2011).

Further downstream in the Klamath River, water temperatures are currently influenced by the presence of the two largest reservoirs, Copco 1 and Iron Gate. Temperature modeling conducted in previous studies (PacifiCorp 2005, NCRWQCB 2010b) indicates that these reservoirs delay the natural warming and cooling of riverine water temperatures on a seasonal basis such that spring temperatures immediately downstream of Iron Gate Dam are generally 1–2.5°C cooler than would be expected under natural conditions,

and summer and fall water temperatures are generally $2-10^{\circ}\text{C}$ warmer. The presence of the reservoirs exerts less influence with distance downstream, where water temperatures are more influenced by the natural heating and cooling regime of surrounding air temperatures and tributary inputs of surface water. By the time water reaches the Salmon River (RM 66), the effects of the dams on water temperature are not discernable (PacifiCorp 2005, NCRWQCB 2010b).


Beneficial Uses and TMDLs in the Klamath Basin (cont.)


Implementation measures are outlined by the states and included in the TMDLs to attain the defined limits. The TMDLs and their implementation measures utilize an adaptive management process; as additional scientific knowledge is gained regarding factors affecting water quality in the Klamath Basin, TMDL-related management approaches may be changed. The ability to fully meet TMDL targets during the analysis period (2012-2061) remains unknown; however, dam removal with implementation of the KBRA is expected to accelerate their attainment compared to dams remain without implementation of the KBRA (WQST 2011).

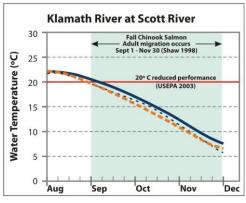

Figure 4.1-14: Removing J.C. Boyle Dam would increase summer water temperatures in the 4-mile reach just downstream of J.C. Boyle Dam, but it would not affect groundwater springs that would continue to serve as refuge habitat for coldwater fish.

Figure 4.1-15: Modeled water temperatures during the fall Chinook salmon migration period for the Klamath River indicate that future (2020–2061) water temperatures will be 1–3°C greater than historical (1961–2009) temperatures due to climate change. Dam removal and KBRA implementation would decrease summer and fall temperatures downstream of Iron Gate Dam, with diminishing effects further downstream. Water temperatures in the Keno Reach would not be affected by dam removal. Simplified patterns from Perry et al. (2011) use standard "GFDL" Global Climate Model output.

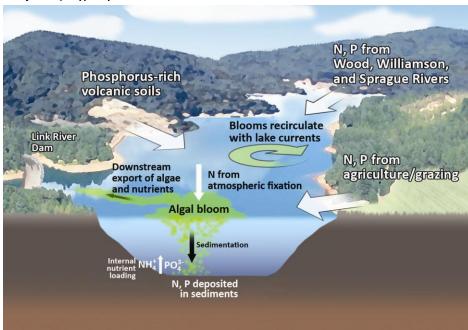
Legend

--- Historical (1961-2009)

--- Dams removed + KBRA hydrology + climate change

Dams remain + Biological Opinion hydrology + climate change

Similar trends are apparent when climate change is included in model projections; results of a more recent water temperature modeling effort using the U.S. Environmental Protection Agency's (USEPA's) RBM10 model indicate that by the end of the 50-year analysis period, climate change will increase water temperatures throughout the Klamath Basin by 1–2°C over historical values (Perry et al. 2011). While this temperature range is slightly lower than that suggested using prior estimates of basin-wide climate change (i.e., 0.5°C per decade or 2.5°C over 50 years [Bartholow 2005]), these predictions suggest that water temperatures in the upper Klamath Basin could increase on the order of 1–3°C during the period of analysis. Despite the long-term warming anticipated under climate change, the primary effect of dam removal would be to restore a more natural thermal regime to the Klamath River from J.C. Boyle Reservoir downstream 160 miles to the confluence of the Salmon River (Perry et al. 2011).

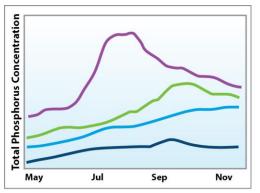

The RBM10 results (including climate change) also indicate that the annual temperature cycle downstream of Iron Gate Dam would shift earlier by approximately 18 days within the first year following dam removal, with 1-2°C warmer temperatures in spring and early summer and up to approximately 4°C cooler temperatures in late summer and fall immediately downstream of the dam (Perry et al. 2011) (see Figure 4.1-15). The return of cooler water temperatures during the late summer and early fall will more closely mimic natural daily and seasonal conditions favorable to support rearing, migration, and earlier spawning and incubation for anadromous salmonids, particularly fall-run Chinook salmon. The warmer spring temperatures may result in faster growth and earlier outmigration of rearing salmon (FERC 2007). This change in timing of emigration is likely to decrease the probability of large-scale outbreaks of disease in juvenile salmon populations that have occurred in the Klamath River during late spring to summer, when ambient air temperatures notably increase and tributary and mainstem flows decrease. At the confluence with the Scott River (RM 143), the differences would be diminished, but there would still be a slight warming (<1°C) in the spring and cooling (1–2°C) in the late summer and fall (see Figure 4.1-15). Further downstream, at the confluence with the Salmon River (RM 66), water temperature changes would not be discernable (not shown).

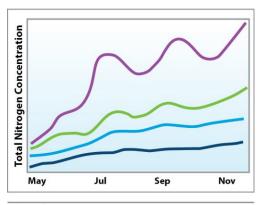
Nutrients

Nutrients, especially nitrogen and phosphorus, are a fundamental and normal component of any aquatic ecosystem. At sufficient levels, nutrients stimulate primary productivity (i.e., algal or plant growth), thereby supporting the base of the food web. When present in excess, nutrients can contribute to degradation of water quality and impairment of beneficial uses. However, except in extreme cases, nutrients alone do not impair fish health. Rather, high levels of nutrients can cause indirect impacts on water quality and fish health through their biostimulatory effect on algal growth, which in turn can result in low dissolved oxygen and high pH conditions.

In the Klamath Basin, relatively high levels of phosphorus present in volcanic rocks, soils, and groundwater have identified as a major source of phosphorus loading to Upper Klamath Lake (Oregon Department of Environmental Quality [ODEQ] 2002). Phosphorus in the soil can be released to surface waters during land disturbing activities, such as farming, grazing, timber harvest, and road building. One large source of both phosphorus and nitrogen has come from tens of thousands of acres of former wetlands near Upper Klamath Lake that were drained and converted to farmland and pasture land. Annual cycles of flooding, draining, and agricultural/grazing activities oxidized the peaty soils, causing many feet of land subsidence, and exporting large nutrient loads to the lake and to the downstream river for nearly a century (Snyder and Morace 1997). Inputs of nutrients from all these sources have been linked to

Figure 4.1-16: Schematic of general nutrient Inputs, internal loading, and algal growth in Upper Klamath Lake. As the lake is relatively shallow (mean depth = 8 feet at mean summer elevation [Wood et. al. 1996]), seasonal separation of warmer surface waters from colder bottom waters (thermal stratification) is typically intermittent.




degradation of water quality (e.g., cyanobacteria blooms, low dissolved oxygen, and high pH) in Upper Klamath Lake (see Figure 4.1-16).

Large phosphorus loads entering Upper Klamath Lake have enriched bottom sediments by roughly a factor of two for total phosphorus in the upper 5 to 15 centimeters (Simon and Ingle 2011). Internal loading of phosphorus from these bottom sediments occurs during late spring through summer and typically exceeds 50 percent of the total annual load (Kann and Walker 1999). The observed relationship between internal phosphorus loading and water temperature in the lake suggests that a biological mechanism is driving seasonal phosphorus dynamics, such as microbial decomposition and high densities of invertebrates in the lake sediments (Kuwabara et al. 2010). Internal sources of nitrogen to Upper Klamath Lake, primarily atmospheric fixation by the cyanobacteria (blue-green algae) *Aphanizomenon flos-aquae*, exceed the external sources (Kann and Walker 1999), which include upland soil erosion, runoff, and irrigation return flows from agriculture (ODEQ 2002).

Water quality in the Keno Impoundment is strongly influenced by outflows from Upper Klamath Lake, as well as agricultural return flows. Extensive monitoring and research conducted in the upper Klamath Basin show that Upper Klamath Lake is a major summertime source of dissolved and particulate nitrogen and phosphorus to the Keno Impoundment. Particulate nutrients are primarily due to large amounts of *A. flos-aquae* that are transported downstream during summer and fall (ODEQ 2002; Sullivan et al. 2011). However, habitat for *A. flos-aquae* is poor in the Keno Impoundment, likely due to reduced hydraulic

Figure 4.1-17: Total phosphorus and total nitrogen concentrations tend to decrease from upstream to downstream in the Klamath River, with the most pronounced peaks occurring downstream of Keno Dam during summer and fall months. Simplified spatial and temporal patterns illustrate generalized trends reported for 2001-2005 in Asarian et al. (2010).

Legend Klamath River downstream of Keno Dam (river mile 233) Klamath River downstream of Iron Gate Dam (river mile 190) Klamath River at Seiad Valley (river mile 129.4) Klamath River at Turwar (river mile 5.8)

mixing (Sullivan et. al. 2011). As a result, algae transported in from Upper Klamath Lake in the summer and fall generally die in the Keno Impoundment, followed by bacterial decomposition of the bloom and associated consumption of dissolved oxygen. Given access to this reach of the Klamath River, the combination of warm summer water temperatures (see Section 4.1.1.4) and low dissolved oxygen could act to seasonally block migration of fall Chinook salmon through the Keno Impoundment (DOI 2007, NOAA Fisheries 2007). Restoration aimed at reducing the severity of these conditions is addressed in the TMDL standards for this reach (ODEQ 2010), a restoration component of the KBRA, and is also a subject of the Interim Measures under KHSA (WQST 2011). Meanwhile, seasonal trap and haul of migrating fall Chinook around Keno Reach is a component of the KBRA until water quality improves.

Total phosphorus (TP) and total nitrogen (TN) levels in the Klamath River generally decrease with distance downstream of Upper Klamath Lake due to particulate trapping in the Keno Impoundment. Nonetheless, nutrient and organic matter exported from the Keno Impoundment are a major source of TP and TN to the reservoirs in the Klamath Hydroelectric Reach (Asarian et al. 2010). On an annual basis, nutrients typically continue to decrease through the Klamath Hydroelectric Reach due to the settling of particulate matter and associated nutrients in the relatively deep Copco 1 and Iron Gate Reservoirs (see Figure 4.1-17). Internal loading of nutrients occurs in the reservoirs with dissolution and release of ortho-phosphate (PO₄³⁻) and ammonium (NH₄⁺) occurring during periods of thermal stratification and hypolimnetic anoxia. Because Copco 1 and Iron Gate Reservoirs are relatively deep (47 feet and 62 feet mean depth, respectively), seasonal stratification is stable and lasts for months. On a seasonal basis, TN and TP can therefore increase downstream of the reservoirs due to the release (export) of dissolved forms of nitrogen and phosphorus to the water column (see Figure 4.1-17).

Analyses of the long-term effects of dam removal on nutrients have been conducted by PacifiCorp (FERC 2007), NCRWQCB (2010b), and the Yurok Tribe (Asarian et al. 2010). While an earlier analysis by Asarian et al. (2009) suggested similar levels of net retention of TN and TP by the dams on an annual basis (11-12 percent) and emphasized the seasonal release of TP and TN with respect to nutrient budgets in the river, results of the later (Asarian et. al. 2010) evaluation indicate that dam removal would result in a relatively larger increase in long-term TN concentrations in the Klamath River immediately downstream of Iron Gate Dam. Based on the Yurok Tribe analysis, TP concentrations just downstream of the dam would increase 2-12 percent for the June-October period, while increases in TN concentrations would be larger, at an estimated 37–42 percent for June–October and 48–55 percent for July–September (Asarian et al. 2010). Anticipated increases in nutrient concentrations downstream of the Klamath Hydroelectric Reach would diminish with distance from Iron Gate Dam due to both tributary dilution and nutrient assimilation (the latter is also termed "nutrient retention," which includes uptake of nutrients by periphyton [attached algae] and microbial denitrification).

Despite the overall increases in absolute nutrient concentrations anticipated with dam removal, the amount of primary productivity (i.e., growth of periphyton) in the river downstream of Iron Gate Dam may not change substantially because nutrients may not be limiting primary productivity in this portion of the Klamath River (FERC 2007, Hoops Valley Tribe Environmental Protection Agency (HVTEPA) 2008, Asarian et al. 2010). Further downstream, the periphyton species in the lower reaches of the Klamath River include species that obtain nitrogen directly from the atmosphere (Asarian et al. 2010), indicating nitrogen limitation in that reach and confirming that in-river retention can reduce river nutrient concentrations significantly. While nutrient dynamics of the reservoirs may be too uncertain to predict in detail, associated pH and dissolved oxygen problems (driven by nutrients) are manifested differently in rivers than in reservoirs. Nonetheless, it is likely that the river would continue to experience high primary productivity (and associated wide diel fluctuations in dissolved oxygen and pH) during the summer months until restoration efforts can reduce nutrient exports from the upper basin (above Keno Dam).

In addition to dam removal, multiple interim measures stipulated in the KHSA could affect water quality, either directly or indirectly (WQST 2011). Under Interim Measures 10 and 11, a number of consensus-based nutrient treatment project options for the upper Klamath Basin would be identified and retained for further evaluation using criteria developed by experts and participants at an upcoming workshop in 2012. These projects include wetland treatment systems, wastewater treatment systems, algae/biomass removal, ambient water treatment systems, sediment nutrient sequestration, sediment removal, wetland restoration, oxidation technologies, and diffuse source treatment systems (WQST 2011). This preliminary set of projects creates a framework for planning to result in long-term, sustained improvements in water quality in the Klamath Basin, despite inherent uncertainties such as climate change. Multiple resource management actions implemented under the KBRA, such as fence construction, off-stream livestock watering, and grazing management in the upper basin, and floodplain rehabilitation, livestock exclusion, and road decommissioning (Barry et al. 2010; Stillwater Sciences 2010) in the lower basin, would accelerate the pace of water quality improvements and increase the likelihood of approaching TMDL nutrient targets by the end of the analysis period (i.e., 2061) (WQST 2011).

In summary, although TN and TP may increase in the Klamath River downstream of the Klamath Hydroelectric Project Reservoirs under a dam removal with KBRA implementation scenario, changes to periphyton growth in the river may not occur to a degree that would increase daily fluctuations in dissolved oxygen and pH or adversely affect fish health. Over the analysis period, implementation of the KBRA and TMDLs would decrease nutrient concentrations in the Klamath River and decrease the potential for indirect effects of periphyton on fisheries-related beneficial uses.

Algal Toxins and Aquatic Biota

Cyanobacteria (blue-green algae), like other species of algae, can be a nuisance aquatic species, occurring as large seasonal blooms in lakes and reservoirs and altering surrounding water quality. Some cyanobacteria species, such as *Microcystis aeruginosa*, can produce toxins (microcystin) in concentrations that cause public health concerns (see Section 4.4.10, *Algal Toxins*) and build up ("bioaccumulate") in the tissue of aquatic biota, such as mussels.

Summertime blooms of cyanobacteria occur in Upper Klamath Lake, which include some instances of *M. aeruginosa* presence (see Section 4.4.10, *Algal Toxins*). The U.S. Geological Survey (USGS) conducted a study of the presence, concentration, and dynamics of microcystin in Upper Klamath Lake, particularly as related to Lost River sucker (*Deltistes luxatus*) and short nose sucker (*Chasmistes brevirostris*) exposure (Vanderkooi et al. 2010).

Figure 4.1-18: Summertime blooms of cyanobacteria (blue-green algae) can produce toxins that bioaccumulate in aquatic biota.

(Continued on next page)

Algal Toxins and Aquatic Biota (cont.)

Large blooms of *M. aeruginosa* occur during summer months in Copco 1 and Iron Gate reservoirs and have been documented as the cause of high microcystin concentrations in the reservoirs themselves and in the Klamath River downstream of Iron Gate Dam (see Section 4.4.10, *Algal Toxins*).

Although it is not yet known the extent to which microcystin in fish and/or invertebrate tissues adversely affects the aquatic organisms themselves, 85 percent of fish and mussel tissue samples collected during July through September 2007 in the Klamath River, including Iron Gate and Copco 1 reservoirs, exhibited microcystin bioaccumulation (Kann 2008, Kann et al. 2011). Estuarine and marine nearshore effects (e.g., sea otter deaths) from cyanobacteria exposure have been reported in other California waters; however, none have been documented to date for the Klamath Estuary or marine nearshore environment (Miller et al. 2010).

Under a dam removal with KBRA implementation scenario, the production of algal toxins in Copco 1 and Iron Gate reservoirs would be eliminated. The algae producing these toxins do not grow in a free flowing river.

Dissolved Oxygen

Dissolved oxygen concentrations are critical to fish health, with values of 8-10 milligrams per liter (mg/L) typically optimal, values less than 5 mg/L chronically stressful, and values less than 3 mg/L typically lethal (USEPA 1986). Dissolved oxygen in rivers and lakes is influenced by several factors, including water temperature, water depth and volume, stream velocity (as related to mixing and reaeration), atmospheric pressure, salinity, photosynthetic production, and respiratory consumption by aquatic organisms. The last two factors are strongly influenced by the availability of nutrients, which fuel algal and aquatic plant growth and the production of organic matter.

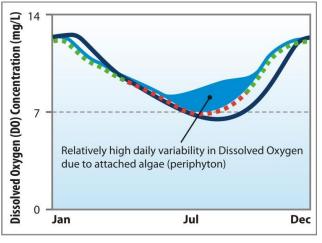
In Upper Klamath Lake, dissolved oxygen concentrations exhibit high seasonal and spatial variability, ranging from less than 4 mg/L to greater than 10 mg/L (Walker 2001, ODEQ 2002, Kannarr et al. 2010, Kann 2010a). High nutrient loading is the primary cause of eutrophication and subsequent low dissolved oxygen levels in the lake, with the lowest concentrations occurring most frequently in August, when water temperatures are high and algal blooms are declining. Downstream in the Keno Impoundment, dissolved oxygen often reaches very low concentrations (from less than 1 mg/L to 2 mg/L) during the July through October period as algae transported from Upper Klamath Lake settle out of the water column and decay (Sullivan et al. 2009, Kirk et al. 2010). Immediately downstream of Keno Dam, improvements to dissolved are substantial due to reaeration, particularly in higher gradient portions of the Klamath River downstream of J.C. Boyle Reservoir.

For fall-run Chinook salmon, increases in low summer and fall dissolved oxygen concentrations (from less than 1 mg/L to 2 mg/L) the Keno Impoundment (including Lake Ewauna) would need to be achieved for optimal migration to occur. Until water quality improvements are realized, fall-run adult Chinook salmon would be seasonally transported around this area as needed. For the most part, transport would not be needed for other Chinook life stages (i.e., outmigrating juveniles) or for spring-run Chinook salmon. As described above in the *Nutrients* section, KBRA implementation would additionally provide resources and opportunities for water quality projects to be initiated in the

upper Klamath Basin, with associated decreases in TN, TP, and organic matter loading to Upper Klamath Lake and the Impoundment. Keno Achievement of summer fall and dissolved oxygen (see Figure 4.1-19) water quality standards these reaches is presumed to be dependent on

Figure 4.1-19: Optimum levels of dissolved oxygen for fish range from 8 to 10 mg/L.

significant progress towards reducing nutrient and organic matter loads, which would be accelerated under the KBRA (WQST 2011).


Modeling conducted for development of the Oregon and California Klamath River TMDLs indicates that dam removal would result in increased dissolved oxygen concentrations in the Klamath Hydroelectric Reach downstream of J.C. Boyle Dam and at the Oregon-California state line during summer and fall (NCRWQCB 2010b). This Klamath TMDL model also predicts that daily fluctuations in dissolved oxygen at these locations during these same seasons may be greater following dam removal due to colonization by periphyton (attached algae), and photosynthesis (producing oxygen) and respiration (consuming oxygen) by the periphyton mats. The effect of periphyton growth in free-flowing reaches of the Klamath River following dam removal is not well quantified, but it is expected that the river would not exhibit the extreme low dissolved oxygen values that currently occur in Copco 1 and Iron Gate Reservoirs during summer and fall. As with upstream reaches, significant progress towards reducing TN and TP loading under the KBRA and the TMDL implementation programs would decrease the likelihood of extreme periphyton growth in this reach and the associated variability in summer and fall dissolved oxygen (WQST 2011).

Surface heating of the deeper Copco 1 (see Figure 4.1-20) and Iron Gate reservoirs in the late spring and summer results in the formation of a warmer, less dense water layer on the reservoir surface (the epilimnion), which overlies colder, denser water (the hypolimnion). This process is called thermal stratification and often persists through the summer and mid-to-late fall. Thermal stratification results in dissolved oxygen conditions that range from supersaturation (i.e., greater than 100 percent saturation) in surface waters due to high rates of photosynthesis by planktonic algae, to hypolimnetic oxygen depletion in bottom waters due to microbial decomposition of dead settling algae. As a result, the dams can release water with low dissolved oxygen concentrations to the river below particularly at times in the fall when reservoir thermal stratification breaks down and the oxygendepleted deeper water mixes with the entire water column.

Figure 4.1-20: The relatively deep Copco 1 Reservoir experiences thermal stratification and results in low dissolved oxygen (from less than 1 mg/L to 5 mg/L) in reservoir bottom waters during summer and fall months. This poor water quality affects the Klamath River downstream of Copco 1 Dam.

Figure 4.1-21: With dam removal, dissolved oxygen in the Klamath River downstream of Iron Gate Dam would consistently achieve North Coast Basin Plan percent saturation objectives and would be greater than dissolved oxygen under existing conditions from April through November. Dam removal may also result in greater variability in dissolved oxygen during June through October due to photosynthesis and respiration of attached algae (periphyton) that establish in the free-flowing river. Lines represent simplified TMDL model output of hourly values from NCRWQCB.

Legend

Dams removed

Solved Oxygen
Objective Nov - Mar

Dams removed
Existing condition (dams in)
85% Saturation
Dissolved Oxygen
Objective Apr - Oct

Source: NCRWQCB 2010a

Modeling conducted for the FERC relicensing process (PacifiCorp 2005) and TMDL development (NCRWQCB 2010a) indicates that dam removal would increase seasonal dissolved oxygen concentrations in the Klamath River downstream of Iron Gate Dam, as compared with existing conditions (dams remain without KBRA). Specifically, model output indicates that with dam removal, dissolved oxygen concentrations immediately downstream of Iron Gate Dam during July through November would be greater than those under existing conditions (see Figure 4.1-21). This condition would result from the lack of stratification and oxygen depletion in bottom waters in the upstream reservoirs as compared with the improved reaeration that occurs in a free-flowing river. As with the river downstream of J.C. Boyle Reservoir, the TMDL model also predicts that daily fluctuations in dissolved oxygen just downstream of Iron Gate Dam during June through October would be greater following dam removal than under existing conditions, a condition linked to periphyton establishment in the free-flowing reaches of the river that are currently occupied by reservoirs.

Additionally, the TMDL model (NCRWQCB 2010b)indicates that following dam removal, dissolved oxygen would more consistently meet the California North Coast Basin Plan water quality objective of 85 percent saturation during April through October (see Figure 4.1-21), especially as TMDL and KBRA-related restorations are implemented (WQST 2011). Winter time (January–March) dissolved oxygen concentrations would be slightly lower with dam removal than existing conditions, but would not fall below Basin Plan minimum criteria for the

winter season (90 percent saturation, see Figure 4.1-21). Differences in long-term dissolved oxygen concentrations between the two scenarios diminish with distance downstream of Iron Gate Dam, with similar predicted dissolved oxygen concentrations and daily fluctuations at Seiad Valley (RM 129.4) and no differences predicted by the confluence with the Trinity River (RM 42.5) (NCRWQCB 2010b).

рΗ

Optimal pH levels for fish typically range from 6.5 to 8.5 pH units. As with dissolved oxygen, pH levels in Upper Klamath Lake, the Keno Impoundment, and the Klamath Hydroelectric Reach exhibit seasonal and spatial variability. Copco 1 and Iron Gate Reservoirs currently experience seasonal and daily variability, with diel (daily) fluctuations (1 to 2 pH units) occurring in reservoir surface waters during periods of intense algae blooms. Dam removal would reduce high summer and fall pH levels (i.e., levels that exceed 9 pH units) in the Klamath Hydroelectric Reach and the Klamath River downstream of Iron Gate Dam due to the elimination of in-reservoir phytoplankton blooms (NCRWQCB 2010b). As with dissolved oxygen, summer and fall colonization of attached algae (periphyton) in the free-flowing Klamath Hydroelectric Reach may result in some

daily variability in pH due to photosynthesis and respiration; however, it is expected to occur to a lesser degree than under current conditions.

As with nutrients and dissolved oxygen, KBRA projects would indirectly decrease summer maximum pH values (greater than 9 pH units) in Upper Klamath Lake, the Keno Impoundment (including Lake Ewauna), and the Klamath Hydroelectric Reach (WQST 2011).

4.1.1.5 Fish Disease

Fish diseases are widespread in the mainstem Klamath River during certain time periods and in certain years and have been shown to adversely affect freshwater abundance of Chinook and coho salmon. High infection rates have been documented in emigrating juvenile Chinook and coho salmon downstream of Iron Gate Dam during the spring and summer in recent years, primarily by one or both myxozoan parasites *C. shasta* and *Parvicapsula minibicornis*. Abnormally high infection prevalence (up to 44% of natural origin juvenile fall Chinook salmon) within the native salmon population indicates that a host-parasite imbalance exists downstream of Iron Gate Dam. Increasing evidence suggests that disease levels are adversely affecting production of juvenile Chinook and coho salmon in the lower Klamath River (Nichols and True 2007; Nichols et al. 2007; Hetrick et al. 2009). Although the disease impacts on Chinook and coho salmon can be large, steelhead are generally resistant to or less affected by *C. shasta* (see Figure 4.1-22) (Hamilton et al. 2011).

Other diseases known to affect salmon in the Klamath Basin include the external protozoan parasite *Ichthyophthirius multifiliis* (Ich), and the bacterial pathogen *Flavobacterium columnare* (columnaris disease). In the fall of 2002, an epizootic outbreak of Ich and columnaris disease was associated with the largest salmon die-off ever recorded in the western United States, which resulted in the mortality of tens of thousands of adult salmon (see Figure 4.1-22) (USFWS 2003; California Department of Fish and Game [CDFG] 2004). It appears that conditions favoring explosive growth of Ich and columnaris were created that year due to high densities of returning Chinook salmon, low September flows and warm water temperatures (Lynch and Risely 2003) that likely inhibited migration of adult fish further upstream (USFWS 2003).

Salmonids and their associated pathogens historically migrated to the upper Klamath Basin; both salmon and these pathogens are native to the upper basin (Administrative Law Judge 2006) and available information suggests that the risk of potential reintroduction of pathogens to Klamath River native fish upstream of the dams would be low. Movement of recently discovered *C. shasta* genotypes upstream of the dams would affect only the host species that transported the genotype (Hamilton et al. 2011).

FERC (2007) concluded that dam removal would enhance water quality and reduce the cumulative water quality and habitat effects that contribute to disease-induced salmon die-offs in the Klamath River downstream of Iron Gate Dam. In general, improvements to water quality, diversity of flows, reduction in water temperature thermal lag caused by reservoirs, reduced concentration of

Conditions Supporting Fish Disease Downstream of Iron Gate Dam

The following habitat conditions, maintained by the presence of the dams, are ideal for supporting salmon disease, such as *C. shasta*, downstream of Iron Gate Dam (Hetrick et al. 2009):

- Stable flows
- A relatively stable streambed
- Concentration of adult salmon and carcasses downstream of a migration barrier
- Plankton-rich discharge from reservoirs

Highly infectious disease zones for fish are associated with dense populations of the invertebrate host (an annelid polychaete worm) in low-velocity habitats with *Cladophora* (a type of green algae), sandsilt, and fine benthic organic material in the substrate (Stocking and Bartholomew 2007).

Figure 4.1-22: Salmon are an intermediate host within the myxozoan life cycle.

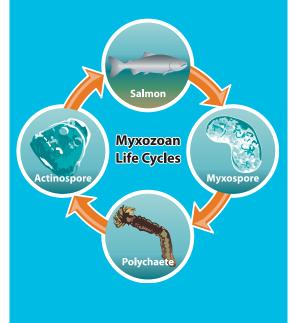


Figure 4.1-23: Thousands of adult salmon in the lower Klamath River died during 2002. Causative factors were low September flows, high concentration of returning Chinook salmon, warm water temperatures, and disease.

adult salmon carcasses below migration barriers, bedload movement, and reduced planktonic drift from reservoirs with dam removal and KBRA implementation would likely alleviate many of the conditions that stimulate disease outbreaks, which currently occur downstream of Iron Gate Dam (Hamilton et al. 2011). In particular, disease conditions for outmigrants from tributaries downstream of Iron Gate Dam would be improved under this scenario, whereas *C. shasta* would continue to be an issue with dams remaining.

4.1.2 Species-Specific Effects

While there is some uncertainty associated with predicting the effects of any management action, information to date indicates that a dam removal with KBRA implementation scenario would improve population viability for most anadromous and resident fish species (Hamilton et al. 2011). Salmon and steelhead would be able to migrate to habitat that was historically available to them (see Figure 4.1-4), significantly increasing production in the Klamath Basin. Dam removal would likely benefit other native fish species by providing additional habitat and increasing habitat connectivity. Dam removal would only minimally affect endangered Lost River and shortnose suckers because the reservoirs do not contribute significantly to the recovery of these species (USFWS 2006, Buchanan et al. 2011). Suckers would benefit from improved water quality in the upper basin from the programs and actions included in the KBRA. Non-native fishes in Klamath River reservoirs may prey upon native fishes, depending on relative size of predator and prey. However, the degree of interaction is unknown. Under the current conditions, the assemblage of nonnative fishes would continue to persist (Buchanan et al. 2011).

Dam removal would change reservoir habitat to a free-flowing river, which would adversely affect non-native fishes in the lower Klamath Basin between Keno Dam and Iron Gate Dam. Abundances of largemouth bass, yellow perch, bluegill, and brown bullhead would significantly decline or be eliminated because their preferred reservoir habitat would be gone. The decline of these non-native fishes would improve conditions for native fishes, including redband/rainbow trout, to the extent that there are adverse interactions at present (Buchanan et al. 2011). The lack of non-native fishes in catches downstream of Iron Gate Dam provides evidence that non-native reservoir fishes would not become abundant in the free-flowing river if dams were removed and therefore they would not adversely affect native salmonids (Buchanan et al. 2011).

Until summer and fall water quality is improved in the Keno Impoundment and Lake Ewauna, however some anadromous fish, such as fall-run Chinook salmon adults, may be dependent on seasonal trap-and-haul operations to move them around areas of high water temperatures and low dissolved oxygen (DOI 2007; NOAA Fisheries Service 2007; see also *Water Quality* Section 4.1.1.3). While average monthly water temperatures in the reach downstream of J.C. Boyle would increase slightly (<0.5 degrees C) during June through September, fish would still have access to thermal refugia in and adjacent to the large cold water springs in this reach (See Table 4.1-2). Overall, water quality would be expected to improve over the long term through the TMDL implementation (see sidebar

on *Beneficial Uses and TMDLs in the Klamath Basin*) and these TMDL efforts would be accelerated by implementation of KBRA restoration actions (Dunne et al. 2011; WQST 2011). Anticipated effects of dam removal and KBRA implementation on key species are described below.

4.1.2.1 Chinook Salmon

Dam removal would benefit fall-run Chinook salmon (see Figure 4.1-24) by restoring access to hundreds of miles of historical habitat, improving water quality, modifying flows, improving existing spawning habitat and flows below Iron Gate Dam, and reducing disease. It is anticipated that through natural reintroduction processes, Chinook salmon would recolonize areas upstream of Iron Gate Dam in a short period of time as was observed after barrier removal at Landsburg Dam in Washington (Kiffney et al. 2009). In addition, through the Fish Reintroduction Plan elements of the KBRA, Chinook salmon would be actively reintroduced into the upper Klamath Basin so that the first returns would occur the year of dam removal.

The Chinook Salmon Expert Panel noted that the increase in Chinook salmon upstream of Keno Dam could be large, but remaining uncertainties precluded the panel from attaching a probability to the prediction based on the information provided to them (Goodman et al. 2011). The panel identified four categories of uncertainties: 1) the wide range of variability in salmon runs in near-pristine systems, 2) lack of detail and specificity about the KBRA, 3) uncertainty about an institutional framework for implementing the KBRA in an adaptive fashion, and 4) outstanding ecological uncertainties in the Klamath River system that appear not to have been resolved by the available studies to date. The panel concluded that predicted increases in abundance would be contingent upon addressing these uncertainties through resolving key factors (see sidebar, *Major Conclusions from Chinook Expert Panel*). However, the panel stated that successfully rehabilitating runs may not require resolving all factors; the more of the

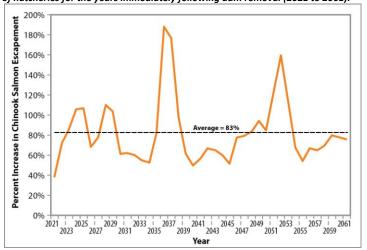
Figure 4.1-24: Chinook salmon would benefit from the increase in habitat and improved water quality as a result of the removal of the Four Facilities.

Major Conclusions from Chinook Salmon Expert Panel

The Chinook Salmon Expert Panel (Goodman et al. 2011) assessment was that the Proposed Action (dam removal with KBRA implementation) appears to be a major step forward in conserving target fish populations compared with decades of vigorous disagreements, obvious fish passage barriers, and continued ecological degradation. They concluded that a substantial increase in Chinook salmon is possible in the reach between Iron Gate Dam and Keno Dam; an increase above Keno Dam could be large but was less certain. Achieving substantial gains in Chinook salmon abundance and distribution in the Klamath Basin is contingent upon resolving key factors, including the following:

- Limitations on access to the upper basin due to water quality problems in Upper Klamath Lake and the Keno Impoundment are resolved.
- Disease is reduced.
- Free migration into the upper basin and successful completion of their life cycle is provided.
- Harvest is managed appropriately.
- Hatchery salmon do not overwhelm genetics of colonizing populations.
- Predation in newly accessible habitat is sufficiently low.
- The buffering effect of upper basin access to groundwater springs is not overwhelmed by climate change.
- Any reduced productivity associated with lower fall flows is small.
- Impacts from dam removal do not have substantial multi-year adverse impacts on mainstem Chinook salmon.

The panel did voice strong reservations, based on their experience or knowledge of other large restoration programs, as to whether KBRA would be implemented effectively.


Overall, the panel indicated that most available information indicates that dam removal is likely to increase the abundance of naturally-spawned Klamath River Chinook above that expected without dam removal. In their opinion, the Proposed Action offers greater potential than the current conditions to improve conditions for water quality, disease, recolonization, increased harvest and escapement, predation, and tolerating climate change and changes in marine survival.

Finally, the panel concluded with certainty that if the Four Facilities are not removed, the Klamath Chinook salmon will continue to decline.

factors addressed, the greater the chances of success. The panel also noted that formal quantitative modeling is the preferred approach for estimating probabilities of uncertain outcomes.

Modeling of Chinook salmon populations under both dam removal with KBRA and dams remain without KBRA suggests that dam removal would increase numbers of spawners over a 50-year period (Lindley and Davis 2011, Hendrix 2011). Of these two modeling efforts, the Evaluation of Dam Removal and Restoration of Anadromy (EDRRA) modeling approach developed by Hendrix (2011) applied a life-cycle model to forecast the abundance of Chinook salmon (fall-run and spring-run combined) for dam removal with KBRA versus dams remain without KBRA for the years 2012 to 2061. The EDRRA model used a

Figure 4.1-25: EDRRA Chinook salmon model results showing the relative percent increase in annual median escapement provided under the Dam Removal and Implementation of KBRA scenario versus the dams remain scenario in the absence of hatcheries for the years immediately following dam removal (2021 to 2061).

Source: Hendrix 2011

Bayesian statistical approach to account for data variability and utilized watershed based stock-recruitment relationships. The model implicitly incorporates varying ocean and freshwater conditions that influenced survival historically. The model does not incorporate changes to water temperatures that might result under the various climate change scenarios. Anticipated removal of the dams, combined with restoration of aquatic habitats as anticipated in the KBRA, is predicted to increase the median annual production of adult Chinook salmon, in the absence of hatcheries, by an average of 83 percent for the years after dam removal (see Figure 4.1-25). The Chinook salmon ocean commercial and sport harvests are forecasted to increase by an average of 50 percent, the inriver tribal harvest would increase by an average of 59 percent, and the in-river recreational fishery would increase by an average of 9 percent in those years following dam removal (2021 to 2061). The increases to the in-river recreational fishery were not as great because the current management of this fishery caps harvest at 25,000 adult fish.

Because the current low abundance and productivity of spring-run Chinook salmon are believed to limit colonization of habitats upstream of Iron Gate Dam, the Chinook Expert Panel concluded that prospects for dam removal to provide a substantial positive effect for spring-run Chinook salmon would be much more remote than for fall-run Chinook salmon (Goodman et al. 2011). However, Phase I of the Fisheries Reintroduction and Management Plan of the KBRA calls for active reintroduction of Chinook into habitats upstream of Upper Klamath Lake, which the panel did not fully consider. It is assumed that this reintroduction would include stock from both spring and fall runs, thus dam removal would likely also benefit spring-run Chinook salmon. Historically, adult spring-run fish migrated upstream of the current location of Iron Gate Dam, perhaps as early as March and likely held over the summer in large deep pools, tributaries fed by cool water, and headwater habitat upstream of Upper Klamath Lake (Snyder 1931; CDFG 1990; Moyle 2002). Dam removal provides an opportunity for spring-run Chinook salmon to become reestablished in the upper Klamath Basin.

Holding areas with suitable temperatures exist upstream of Iron Gate Dam in locations such as Big Springs in the J.C. Boyle Bypass Reach (BLM 2003), groundwater-influenced areas on the west side of Upper Klamath Lake (Gannett et al. 2007), the Wood River (Gannett et al. 2007), and the Williamson River. The Williamson River, both upstream and downstream of its confluence with the Sprague River, continues to provide deep, coldwater holding habitat (Hamilton et al. 2010). It is also likely that holding habitat exists under the reservoirs where tributaries would join the mainstem. Dam removal would make these habitats available to migrating spring-run Chinook salmon adults. The removal of dam structures and improvement of water quality would likely improve conditions for outmigrating juveniles.

To assess whether current conditions would physiologically impair Iron Gate Hatchery Chinook salmon reintroduced into the upper Klamath Basin, juveniles were held in test cages in Upper Klamath Lake and the Williamson River in 2005 and 2006. These juveniles showed normal development as smolts in Upper Klamath Lake and survived well in both locations (Maule et al. 2009). The authors concluded that there was little evidence of physiological impairment or significant vulnerability to *C. shasta* that would preclude this stock from being reintroduced successfully into the upper Klamath Basin.

4.1.2.2 Coho Salmon

Coho salmon (see Figure 4.1-26) in the Klamath Basin are part of the Southern Oregon/Northern California Coast Evolutionary Significant Unit (ESU). Williams et al. (2006) described nine coho salmon populations in the Klamath Basin, including the upper Klamath River, Shasta River, Scott River, Salmon River, Mid-Klamath River, lower Klamath River, and three population units within the Trinity Basin (upper Trinity River, lower Trinity River, and South Fork Trinity River).

Figure 4.1-26: Coho salmon are expected to recolonize upstream habitat with the removal of the Four Facilities.

With dam removal, coho salmon would be expected to rapidly recolonize habitat upstream of Iron Gate Dam, as observed after barrier removal at Landsburg Dam in Washington (Kiffney et al. 2009) and dam removal at Little Sandy Dam in Oregon (Strobel, Portland Water Bureau, pers. comm.). Assuming coho salmon distribution will extend up to Spencer Creek after dam removal, coho salmon from the upper Klamath River

population will reclaim 68 miles of habitat: approximately 45 miles in the mainstem Klamath River and tributaries (DOI 2007; NOAA Fisheries Service 2007) and 23 miles currently inundated by the reservoirs (Cunanan 2009).

Major Conclusions of the Coho Salmon and Steelhead Expert Panel on Coho

The Coho Salmon and Steelhead Expert Panel's (Dunne et al. 2011) assessment was that current conditions will likely continue to be detrimental to coho salmon. The Panel also concluded that while there would be an increase in coho salmon due to dam removal and KBRA, it would likely be small, especially in the short term (0–10 years following dam removal).

The Panel concluded that larger (moderate) responses would be possible under a dam removal scenario contingent on the following:

- The KBRA is fully and effectively implemented.
- Mortality caused by the pathogen *C. shasta* is reduced.

Coho salmon colonization of the Klamath Hydroelectric Reach between Keno and Iron Gate dams would likely increase the abundance and distribution of the ESU by some amount, which are key factors used by NOAA Fisheries Service to assess viability of the ESU.

The panel indicated that under a dams out with KBRA, newly established coho salmon populations upstream of Iron Gate Dam reduce risks to long-term viability in the face of continuing stresses from land and water resource use, as well as climate change. This may be particularly relevant for populations that may be able to access sources of cold groundwater discharge, which would allow coho salmon to persist in spite of possible water temperature increases.

(Continued on next page)

Major Conclusions of the Coho Salmon and Steelhead Expert Panel on Steelhead (cont.)

The Coho Salmon and Steelhead Expert Panel's assessment was optimistic that dam removal paired with the KBRA would increase the abundance and distribution of steelhead in the basin relative to current conditions (Dunne et al. 2011).

If dam removal and KBRA are implemented effectively, and the other related actions occur (e.g., full attainment of TMDLs), then the response of steelhead may include broader spatial distribution and increased numbers of individuals within the Klamath Basin. The panel indicated that key issues affecting success would depend on how the KBRA is implemented, the degree of colonization of the upper watershed by steelhead, the success of passage through the unfavorable summer and fall water quality conditions in Keno Reservoir and Upper Klamath Lake, how reliant the current population is on hatchery fish, the outcome of interactions between steelhead and resident rainbow trout (Onchorisis mykis), and the influence of hatchery releases on the fitness of wild fish.

Figure 4.1-27: With dam removal steelhead trout would have increased habitat to spawn. (Photo courtesy of Scott Harris, CDFG)

Dam removal and KBRA implementation are also expected to result in significant improvements to mainstem Klamath River hydrology, instream habitat, water quality, and decrease the incidence of disease (see prior sections devoted to these topics) downstream of Iron Gate Dam and these improvements will benefit coho populations throughout the Klamath Basin. Populations currently in the vicinity of Iron Gate Dam are most affected by dam-related factors, and these populations would receive the most benefits from dam removal.

Investigations assessing the benefits and risks of dam removal and the KBRA on coho salmon have resulted in a range of viewpoints. For example, the Coho Salmon and Steelhead Expert Panel (Dunne et al. 2011) concluded that coho would receive relatively small improvements from dam removal, especially in the short term (0 to 10 years following dam removal); however, the benefits would likely be greater if the KBRA were fully and effectively implemented (see sidebar, *Major Conclusions of the Coho Salmon and Steelhead Expert Panel on Coho*). Stillwater Sciences (2010) noted that the KBRA provides greater opportunities for restoration than with dams in place, and concludes that coho would receive additional benefits to their long-term viability through increases in population abundance, productivity, spatial structure, and genetic diversity.

The Coho Salmon and Steelhead Expert Panel (Dunne et al. 2011) and Hamilton et al. (2011) concluded that the benefits of dam removal for coho salmon go beyond increased abundance. While noting uncertainties, the panel acknowledged that colonization (see sidebar, *Major Conclusions of the Coho Salmon and Steelhead Expert Panel on Coho*) of the Klamath River between Keno and Iron Gate dams by the upper Klamath coho salmon population would likely improve the viability of the Southern Oregon/Northern California Coast ESU by increasing abundance, diversity, productivity and spatial distribution. In general, as habitat availability and diversity increase for an ESU, so does the resilience of the population, reducing the risk of extinction (McElhany et al. 2000) and increasing chances for recovery.

4.1.2.3 Steelhead Trout

Dam removal would reestablish steelhead (see Figure 4.1-27) upstream of Iron Gate Dam and increase habitat available to this species (FERC 2007). Because of their ability to navigate steeper gradient channels and spawn in smaller, intermittent streams (Platts and Partridge 1978), and their ability to withstand a wide range of water temperatures (Cech and Myrick 1999; Spina 2007), steelhead distribution in the basin would be expected to expand to a greater degree (420 miles) (Huntington 2006) than that of any other anadromous salmonid species.

If dam removal were implemented effectively, the assessment of the Klamath River Coho/Steelhead Expert Panel was that steelhead could result in increased spatial distribution and population numbers would increase. This is based on the likelihood of steelhead being given access to substantial new habitat, the fact that other similar species (resident redband/rainbow trout) are doing well in the upstream habitat, and that steelhead are currently at lower abundances than historical values but not yet rare (Dunne et al. 2011). In general, a dam removal with KBRA implementation would likely support a greater number of spawning areas, increase genetic diversity, and allow for a wider variety of life history patterns, which could increase the population's resilience in the face of climate change (Hamilton et al. 2011). The movement of native steelhead trout upstream of Iron Gate Dam presents a low risk of residualization (i.e., reverting to a resident rainbow trout life history strategy) (Administrative Law Judge 2006).

4.1.2.4 Lamprey

Pacific lamprey (see Figure 4.1-28) is the only anadromous lamprey species in the Klamath Basin, although five other resident lamprey species are also present. Access to habitat upstream of Iron Gate Dam would benefit Pacific lamprey populations by increasing their viability through 1) extending the range and distribution of the species; 2) providing additional spawning and rearing habitat; 3) increasing genetic diversity; and 4) increasing their abundance (Administrative Law Judge 2006). Removal of the dams is considered to be the only feasible method for expanding the current range of Pacific lamprey to areas upstream of Iron Gate Dam (FERC 2007). Pacific lamprey, along with three other lamprey species, was petitioned for listing under the ESA in 2003 (Nawa 2003). Although the USFWS halted species status review in December 2004 due to inadequate information (USFWS 2004), efforts to list Pacific lamprey may resume as more information is obtained. No current status assessments are available for any Klamath lamprey species and little is known regarding their biology or sensitivity to environmental changes in the Klamath Basin (Hamilton et al. 2011).

Figure 4.1-28: Pacific Lamprey Expert Panel (Close et al. 2011) predicts increased carrying capacity for Pacific lamprey with dam removal. (Photo courtesy of Abel Brumo)

Major Conclusions of the Lamprey Expert Panel

The Lamprey Expert Panel's (Close et al. 2011) assessment was that dam removal and the KBRA could eventually increase Pacific lamprey carrying capacity in the Klamath Basin by a maximum of 14 percent (based on an analysis of mainstem habitat), and potentially more if the upper Klamath Basin is accessible and contains suitable habitat. Adult Pacific lamprey would be expected to recolonize newly accessible habitat following dam removal, but in the absence of active reintroduction measures, recolonization could take decades.

Should the release of sediment from dam removal result in short-term mortality of lamprey downstream of Iron Gate Dam, the panel expects that larval lamprey from tributaries would recolonize this habitat during normal downstream movements.

Pacific lamprey larval rearing capacity downstream of Iron Gate Dam would likely increase for a short time after dam removal because of fine sediment released from dam removal. This habitat would decrease over time, but likely remain higher than under current conditions because sediment transport would no longer be interrupted by the presence of the dams and reservoirs.

Under a dam removal with KBRA scenario, Pacific lamprey harvest rates would be expected to eventually increase by 1 to 10 percent downstream of Iron Gate Dam.

The panel indicated that the carrying capacity for freshwater resident lamprey species would not likely change significantly with dam removal; but implementation of the KBRA could result in modest increases.

4.1 Expected Effects of Dam Removal and KBRA on Physical, Chemical, and Biological Processes that Support Salmonid and Other Fish Populations

Stranding and Habitat Loss Due to Hydropower Peaking

Flows in the J.C. Boyle Peaking Reach undergo rapid and extreme daily fluctuations that can strand and displace fish, cause large temperature fluctuations, increase energetic demands upon fish, and reduce productivity of the aquatic insect and invertebrate communities that provide food for fish.

In one stranding event along 225 feet of the Peaking Reach, about 5,000 fish of various species, more crayfish, and an order of magnitude more aquatic insects, perished in a single peaking cycle. Peaking operations that cause high mortality such as this likely only happen a few times a year. However, peaking can result in severe cumulative impacts to fish populations (Administrative Law Judge 2006). Under existing operations, J.C. Boyle peaking has been shown to eliminate effective habitat for redband trout fry (BLM 2003).

Figure 4.1-30: Stranded fish and macroinvertebrates in the J.C. Boyle Peaking Reach.

The Lamprey Expert Panel compared the potential effects of dam removal versus leaving dams in place on Pacific lamprey populations (Close et al. 2011). They concluded that a dam removal with KBRA implementation scenario could increase Pacific lamprey production by up to 14 percent compared with dams remaining in. The increase could potentially be more if habitat in the upper Klamath Basin is accessible and suitable (see sidebar, *Major Conclusions of the Lamprey Expert Panel*).

Dam removal would eliminate the adverse effects of power peaking on endemic resident lamprey species in the Klamath Hydroelectric Reach. Conditions with dams removed and with implementation of the KBRA would likely increase populations as physical, chemical, and biological processes of the Klamath River are restored. Capacity for the freshwater-resident lamprey species in the upper Klamath Basin would not be expected to change significantly with dam removal, but might increase somewhat with implementation of the KBRA aquatic habitat restoration measures (Close et al. 2011).

4.1.2.5 Green Sturgeon

The green sturgeon is a long-lived anadromous species that can attain large size (see Figure 4.1-29). The green sturgeon in the Klamath River belongs to the Northern Green Sturgeon Distinct Population Segment; the green sturgeon is designated as a Species of Concern by NOAA Fisheries Service. Green sturgeon occur within the lower 67 miles of the Klamath River, downstream of Ishi Pishi Falls, and would be affected by dam removal and KBRA effects that extend downstream past these falls. Dam removal and the KBRA would return the Klamath River mainstem within the habitat of green sturgeon to a temperature and flow regime that more closely mimics historical patterns and would likely benefit green sturgeon (Hamilton et al. 2011). Overall, dam removal and associated KBRA actions would be expected to accelerate TMDL water quality benefits to this species.

Figure 4.1-29: Habitat for the green sturgeon, a species of concern, would improve in the Klamath River with the removal of the Four Facilities.

4.1.2.6 Eulachon

Eulachon are anadromous fish that occur in the lower portions of larger rivers draining into the northeastern Pacific Ocean, including the Klamath River. Eulachon were historically abundant, but currently are rarely observed in the lower Klamath River and Estuary, and NOAA Fisheries Service listed the Southern Distinct Population Segment of eulachon as threatened under the ESA (NOAA Fisheries Service 2010). With dam removal, KBRA implementation, and implementation of the TMDLs, water quality would improve throughout the Klamath River, including the estuary (WQST 2011). It is anticipated that habitat restoration efforts under KBRA and water quality improvements could directly contribute to recovery of any remnant eulachon populations that may still exist.

4.1.2.7 Bull Trout

Bull trout are currently listed as threatened under the ESA. The current abundance, distribution, and range of bull trout in the Klamath Basin are greatly reduced from historical levels due to habitat loss and degradation caused by reduced water quality, timber harvest, livestock grazing, water diversions, roads, and the introduction of non-native fishes (USFWS 2002). Bull trout populations in the Klamath interim recovery unit face a high risk of extirpation (USFWS 2002). Bull trout are considered extinct in California (Rode 1990).

In the upper Klamath Basin, this species is confined to the far upper reaches of the watershed. Although the status of specific local populations has been slightly improved by recovery actions, the overall status of Klamath River bull trout continues to be depressed (USFWS 2002).

Factors considered threats to bull trout in the Klamath Basin at the time of listing include habitat loss and degradation caused by reduced water quality, past and present land use, water diversions, roads, and non-native fishes. All of these factors continue to be threats today.

The KBRA would likely accelerate compliance with TMDL water quality objectives (WQST 2011; Dunne et al. 2011) thereby providing benefits to bull trout. The implementation of the KHSA and the KBRA therefore provides promise for increasing overall population abundance and distribution of bull trout (Buchanan et al. 2011).

4.1.2.8 Redband and Rainbow Trout

Redband and rainbow trout are a relatively abundant native species of the Klamath Basin and they support an important trophy trout recreational fishery (see Figure 4.1-31). Dam removal would increase free-flowing redband/rainbow trout habitat downstream of Keno Dam by restoring river channel habitat inundated by reservoirs, eliminating extreme daily flow and water temperature fluctuations in the J.C. Boyle Peaking Reach, and increasing flows in the J.C. Boyle Bypass Reach. This would expand the total distribution of resident trophy trout in the fishery approximately seven times from downstream of Keno Dam to the Iron Gate reach (Buchanan et al. 2011). Mortality of redband trout would be reduced by eliminating entrainment (Gutermuth et al. 2000), and stranding

Figure 4.1-31: Redband trout, a native species in the Klamath River, would benefit from the a freeflowing river with dam removal.

4.1 Expected Effects of Dam Removal and KBRA on Physical, Chemical, and Biological Processes that Support Salmonid and Other Fish Populations

JC Boyle Power Peaking

The JC Boyle powerhouse operates to produce peaking power. Peak power is generated during peak power demand which typically occurs during the morning and evening hours. During peaking periods, flows up to 3000 cfs are passed through the power canal and powerhouse turbines which results in a rapid rise and fall of river water levels below the powerhouse extending down to Copco 1 Reservoir. During the off peak periods, flows are reduced and water is stored in the reservoir for the next peaking period. Rafters enjoy the predictability of the high peaking power flows, particularly during the late summer months, but the rapid rise and fall of river water levels can negatively affect aquatic resources.

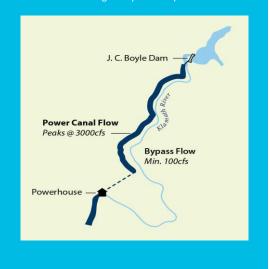


Figure 4.1-32: Both Lost River (below) and shortnose suckers are endangered species that would likely benefit from KBRA habitat and water-quality improvements in the upper Klamath Basin.

that occurs during power peaking operation. Removal of the dams and improved management of flows under the KBRA would improve spawning and rearing flows for resident trout. The Expert Panel on Resident Fish concluded that following dam removal, the abundance of redband/rainbow trout in the freeflowing reach between Keno Dam and Iron Gate dam could increase significantly (Buchanan et al. 2011). Because about 23 miles of this habitat is currently inundated by the reservoirs (Cunanan 2009), the degree to which this action will improve habitat for different life stages of resident trout is uncertain, but it is expected that the total reach should continue to produce large trout up to 23 inches long (Buchanan et al. 2011). Assuming that spawning habitat is not limiting, the panel estimated that the new free-flowing reaches could increase harvest up to seven-fold and concluded that it is possible that the trophy fishery would likewise expand in the new free-flowing reaches (Buchanan et al. 2011). Redband could be affected by increased predation from reintroduced salmonids, but this loss might be offset by an increase in available food sources (e.g., eggs, fry, and juveniles of reintroduced salmonids) (Hamilton et al. 2011).

Benefits to redband/rainbow trout in tributaries to Upper Klamath Lake would be realized indirectly by implementing the KBRA (Buchanan et al. 2011). Improving water quality, increasing summer flows, and restoring riparian habitat are expected to increase trout productivity in these areas (Buchanan et al. 2011). Redband trout are not, or are only minimally, susceptible to *C. shasta* or other diseases that could be carried upstream by anadromous fish (Administrative Law Judge 2006, Bartholomew and Courter 2007). Because habitat improvement measures in the KBRA have not yet been planned in detail, the population benefits will depend on how these measures ultimately affect redband/rainbow trout habitat.

Operations for peaking power (see JC Boyle Power Peaking sidebar) within the reach between J.C. Boyle Powerhouse and Copco 1 Reservoir currently causes chronic stress to trout and results in mortality, stranding and entrainment of fry, juvenile, and adult redband/rainbow trout (summarized in Buchanan et al. 2011). Removing the dams would eliminate the effects of power peaking and would restore more natural water temperature, flow, and sediment transport regimes, which are anticipated to reverse declines in abundance and size of adult redband trout that utilize habitats downstream of J.C. Boyle Dam and may also restore life history strategies conducive to maintaining the population's viability over the long term.

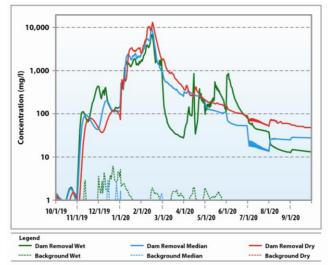
4.1.2.9 Endangered Sucker Species

Removal of the dams and implementation of the KBRA would accelerate water quality improvements for both shortnose and Lost River suckers (Dunne et al. 2011). Although the endangered suckers will not benefit directly from dam removal, the habitat restoration and additional water that will be made available under the KBRA, as well as improvements in water quality are likely to improve their status. Conditions with dams and without KBRA would provide fewer opportunities for water quality and habitat improvements in the upper basin areas, where Lost River and shortnose suckers currently reside.

Based on available information, the Resident Fish Expert Panel (Buchanan et al. 2011) concluded that both Lost River and shortnose suckers are declining under current conditions and that they could become extinct in the near future unless a major recruitment event occurs soon. While there is some uncertainty in this regard, the panel indicated that dam removal and KBRA implementation would provide greater promise for preventing extinction of these species, and for increasing overall population abundance and productivity, than would occur if

the dams were left place and KBRA was not implemented. The panel cited major habitat improvements in Upper Klamath Lake and its tributaries that support these fishes as the key factors likely to benefit Lost River and shortnose suckers with implementation of the KBRA.

Dam removal would eliminate habitat for adult shortnose and Lost River suckers in the existing reservoirs (FERC 2007). However, reservoir populations and habitat downstream of Keno Dam are not considered to contribute significantly to sucker recovery (USFWS 2006). Analysis by FERC suggests that the population of Lost River and shortnose suckers in Copco I Reservoir is supported primarily by recruitment of juvenile and adult suckers from Upper Klamath Lake and J.C. Boyle Reservoir (FERC 2007). The USFWS has proposed to designate critical habitat for Lost River and shortnose suckers (76 FR 76337) in the Upper Klamath Lake and Lost River Basin. This designation would remove the Four Facilities from previous proposed critical habit listing.


4.1.3 Short Term Effects on Fisheries from Dam Removal

Dam removal would have short-term effects on fish habitat due to the transport of sediments currently deposited behind the dams and water quality effects associated with that sediment transport. Effects vary by species and could last from six months to a few years. A number of potential mitigation measures are available that would reduce the anticipated adverse short-term effects on aquatic species.

4.1.3.1 Sediment Transport and Short-term Water Quality Effects

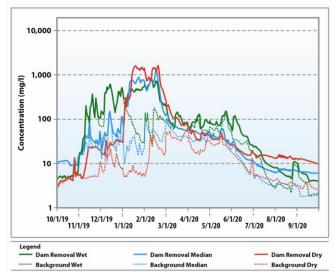

The dam deconstruction process would have short-term adverse effects on water quality and aquatic species. Dam removal would increase suspended sediment concentrations (SSCs) downstream of the dams due to the transport of large quantities of fine sediment that has been deposited in the reservoirs (see Figures 4.1-33 and 4.1-34). Several mitigation measures would be employed to minimize these short-term effects as described in section 4.1.3.3.

Figure 4.1-33: Modeled suspended sediment concentrations immediately downstream of Iron Gate Dam for dam removal in dry, median and wet water years. Background concentrations are modeled using data from all water year types for 1961–2008.

Source: Reclamation 2011e

Figure 4.1-34: Modeled suspended sediment concentrations at Klamath, CA (river mouth) for dam removal in dry, median and wet water years. Background concentrations are modeled using data from all water year types for 1961–2008.

SECTION 4 • Secretarial Determination Findings of Technical Studies

4.1 Expected Effects of Dam Removal and KBRA on Physical, Chemical, and Biological Processes that Support Salmonid and Other Fish Populations

In the short-term, resuspension of reservoir bottom sediments during dam removal would increase oxygen demand (immediate oxygen demand and biological oxygen demand), resulting in temporary reductions in dissolved oxygen in the Klamath Hydroelectric Reach and the Klamath River downstream of Iron Gate Dam due to microbial decomposition of the high fraction of organic carbon present in these sediment deposits (Shannon and Wilson Inc. 2006, Stillwater Sciences 2011b). Depending on the flow patterns during the year of dam removal and associated SSCs, modeling studies predict that short-term (two months) increases in oxygen demand following dam removal would likely result in dissolved oxygen concentrations above the chronically stressful level (5 mg/L; USEPA 1986) for salmonids. However, exceptions to this could occur for four to eight weeks following drawdown of J.C. Boyle and Iron Gate Reservoirs (i.e., in February 2020), when dissolved oxygen would remain between 5 mg/L and 3 mg/L (typical lethal threshold for fish) for a distance of approximately 12.5-15.5 miles (~20–25 km) downstream of Iron Gate Dam (near the confluence with the Shasta River). Conditions will vary depending on water year type (dry, normal, or wet). In a dry year (worst conditions), predicted concentrations in February 2020 could decrease to lethal levels for fish (near 1 mg/L) for about 0.8 km (0.5 miles), and values less than 5 mg/l for about 19 km (12 miles) downstream of Iron Gate Dam for a period of around 2-3 weeks (Stillwater Sciences 2011b).

Dissolved oxygen impacts on fish would be anticipated to be secondary to the impacts of sediment itself. Sediment transport modeling indicates that, depending on hydrology during the year of dam removal, peak SSCs immediately downstream of Iron Gate Dam would range from 9,000 to 13,600 mg/L, (see Figure 4.1-33) with the highest peak concentrations likely to occur in dry years. During reservoir drawdown SSCs in excess of 1000 mg/L would last for 2 to 3 months (see Figure 4.1-33 and Table 4.1-5) (Reclamation 2011e, Stillwater Sciences 2008). Note however, that uncertainty in SSC predictions is large (≈50– 100 percent). Further downstream of Iron Gate Dam, SSCs would decline because of dilution by tributary inputs. Concentrations near Seiad Valley (RM 129.4) and Orleans (RM 59) would be 60-70 percent and 40 percent of those below Iron Gate Dam, respectively. Wintertime effects would be more severe during a dry year, when low reservoir levels expose more sediment in January. Effects during spring (when smolt outmigration generally occurs) would be more severe during a wet year, when it is predicted that the reservoirs would refill during winter, delaying the release of suspended sediments until they drop during spring (Reclamation 2011e). Daily durations of SSCs were modeled assuming dam removal occurred during each of the 48 years in the available hydrology record since 1961. The results of modeling all potential years were summarized for each life-stage of each species assessed (see Figure 4.1-35). To compare the range of results and impacts that might occur, the two scenarios (dam removal and dams remain), were analyzed to predict the potential impacts on fish that has either a 50 percent (likely to occur) or 10 percent (unlikely, or worst case) probability of occurring.

4.1 Expected Effects of Dam Removal and KBRA on Physical, Chemical, and Biological Processes

that Support Salmonid and Other Fish Populations

DAM REMOVAL SCHEDULE NOV DEC JAN FEB MAR APR MAY JUN JUL AUG DEC J.C. BOYLE DAM COPCO 1 DAM * COPCO 2 DAM RON GATE DAM LIFE CYCLE Adult Migration FALL Spawning CHINOOK Juvenile Outmigration **Adult Migration** SPRING CHINOOK Juvenile Outmigration Juvenile Outmigration **Adult Migration** соно SALMON luvenile Outmigration **Juvenile Redistribution** Adult Migration Run-Backs in River SUMMER STEELHEAD Juvenile Outmigration Half-Pounder Residence Half-Pounder Residence Fall-Run Adult Migration Winter-Run Adult Migration Winter-Run Adult Migration Run-Backs in River WINTER STEELHEAD Juvenile Outmigration Half-Pounder Residence Half-Pounder Residence Adult Migration Spawning GREEN STURGEON Post-Spawning Adult Holding in Mainstern Juvenile Outmigration Adult Migration Spawning Incubation Rearing Juvenile Outmigration Legend (life stage representation colors vary by species) Dam Removal: Sturgeon Adult Migration Reservoir Drawdown and Sediment Release Life Stage Present in Mainstem of Klamath River Sturgeon Juvenile Migration Dam Removal Peak Time Lamprey Adult Migration X No significant release of sediment expected Direction of Salmonid Adult Migration Lamprey Juvenile Migration Direction of Salmonid Juvenile Migration Spawning (all species)

Figure 4.1-35: Timeline depicting the timing of salmon lifecycles in the mainstem of the Klamath River coinciding with dam removal plans.

Source: Stillwater 2010

4.1 Expected Effects of Dam Removal and KBRA on Physical, Chemical, and Biological Processes that Support Salmonid and Other Fish Populations

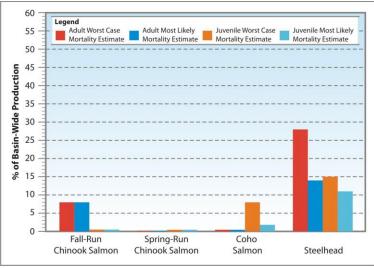
As shown in Table 4.1-5, typical dry year conditions are predicted to result in the highest peak concentrations for the longest duration directly downstream of Iron Gate Dam. Despite uncertainty in model predictions, it can be conservatively assumed that SSCs will be sufficiently high to adversely affect fish throughout the Klamath River for 6 to 10 months following drawdown, especially during dry years, and especially directly downstream of Iron Gate Dam (Stillwater Sciences 2011a).

Table 4.1-5: Summary of Model Predictions for SSCs in the Klamath River Downstream of Iron Gate Dam

Water Year	Peak SSC	<u>ssc≥</u>	SSC≥1,000 mg/L		SSC≥100 mg/L		SSC≥30 mg/L	
Туре	(mg/L)	Duration (Months)	Time Period	Duration (Months)	Time Period	Duration (Months)	Time Period	
Dry (WY2001)	13,600	3	January–March 2020	6	January–June 2020	10	January– October 2020	
Median (WY1976)	9,900	2	January– February 2020	5	January–May 2020	6	January–June 2020	
Wet (WY1984)	7,100	2	January– February 2020	7	November 2019– February 2020 and April– June 2020	9	November 2019–July 2020	

Source: Reclamation 2011e

Key:


WY = Water Year

SSC = suspended sediment concentration

mg/L = milligrams per liter

The high SSCs anticipated in the Klamath River during dam deconstruction are likely to reach lethal levels for fish during the winter and early spring of the first year following drawdown. However, natural disturbance events within the Klamath Basin periodically result in SSCs as high as those predicted for dam removal, and they typically occur during winter high flow events. The timing of drawdown (early January) was selected to coincide with periods of naturally

Figure 4.1-36: Estimated mortality impacts on basin-wide production (number of adults or juveniles) resulting from dam removal for key salmonid species (Stillwater Sciences 2011a) for both median (most likely) and low flow (worst case) water years.

high SSCs in the Klamath River, to which aquatic species have adapted by avoiding or tolerating. Based on Figure 4.1-35, the distribution and lifehistory timing of aquatic species in the basin, only a portion of some populations are likely to be present in the mainstem Klamath River during the period of greatest SSCs (January through February), with most species located in tributaries or further downstream where concentrations would be diluted by accretion flows or in the Pacific Ocean. However, some mortality is predicted to occur. Figure 4.1-36 illustrates the basin-wide mortality to several salmonid species that are likely to be affected by high SSCs with dam removal. In addition to direct mortality, sublethal impacts are also predicted, including physiological stress, impaired homing rates for adults, and reduced growth rates for juveniles. These sublethal effects, in association with other stressors such as high water temperature and disease, might act cumulatively to increase mortality for some species in the mainstem in the short term (within 6 months) following dam removal.

Although Figure 4.1-36 summarizes impacts only for salmonids, some mortality and sublethal impacts are also predicted for green sturgeon, eulachon and Pacific lamprey. Data for these species were insufficient to estimate the overall mortality within the basin.

It is expected that the impacts on fish populations due to high SSCs would be significant for some species (most notably, steelhead) in the short-term. However, in general, fish populations in the Klamath Basin have a wide spatial distribution (including the marine environment for adult life stages) and diversity of life history timing that would result in exposure of only a portion of the population to suspended sediments released during dam removal (see Figure 4.1-36). For example a proportion of fall-run Chinook salmon spawn in the mainstem Klamath River downstream of Iron Gate Dam, while the remainder spawn in tributaries. As summarized in Figure 4.1-36, under either a low flow or median flow year, eight percent mortality of the basin-wide production of fall-run Chinook salmon adults is predicted.

Short-term (within two years) adverse affects to habitat features such as spawning gravels are also anticipated directly downstream of Iron Gate Dam. Eventually, the channel would return to its pre-dam form, reestablishing processes that provide suitable habitat (i.e., spawning gravels). When estimates of mortality and sublethal effects in the short-term are considered in conjunction with the long-term beneficial affects described above, it is expected that populations would recover to pre-dam removal levels within one to two years following dam removal.(Stillwater Sciences 2011a).

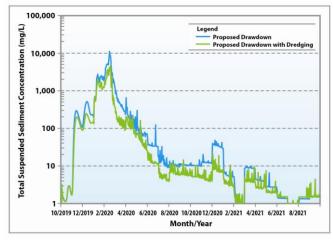
4.1.3.2 Evaluation of Dredging Reservoir Sediments to Reduce Short-term Impacts on Fisheries

Recognizing the short-term adverse impact on fisheries if dams are removed and reservoir sediments are transported downstream, the feasibility of mechanically dredging reservoir sediments prior to dam removal was investigated (Lynch 2011). A feasibility determination was made based on considerations of dredging technologies to remove sediments, their potential effectiveness, potential impacts on terrestrial and cultural resources, potential cost of dredging, and whether it would significantly reduce short-term impacts on fish and fisheries.

Total reservoir sediment volumes were estimated at 17.6 million cubic yards in J.C. Boyle, Copco 1, and Iron Gate reservoirs. Of this total, about 6.5 million cubic yards of sediment would be eroded and released drawdown of if dams were removed (CDM 2011c). Copco 2 Reservoir does not contain appreciable bottom sediments (Reclamation 2010b). Several dredging technologies were evaluated to remove potentially erodible reservoir sediments. A significant factor in the evaluation was the nature of the sediments which are composed of between 44 to 94 percent silt and clay, varying by location in the reservoirs and

Mitigating for Short Term Dam Removal Impacts

Several mitigation measures would reduce short-term impacts on aquatic species, including the following:


- Capture of migrating adult fish in the mainstem Klamath River prior to dam removal and relocation to suitable habitat
- Release of fall pulse-flows to enhance migration out of the mainstem prior to dam removal
- Collection of juvenile salmonids and lamprey before they enter areas of the mainstem with high SSCs and release to downstream areas where concentrations are lower (see Figure 4.1-33)
- Adjustments in hatchery management to protect smolt releases
- Relocation of Pacific lamprey rearing in mainstem locations that may be most affected by sediment released during dam removal
- Relocation of suckers from reservoir habitat prior to dam removal
- Relocation of freshwater mussels from areas that may be most affected by sediment releases

4.1 Expected Effects of Dam Removal and KBRA on Physical, Chemical, and Biological Processes that Support Salmonid and Other Fish Populations

proximity to river and tributary inputs. This sediment also has a high water and organic matter content. The flocculent, fine-grained sediment present in the reservoirs is not conducive to efficient dredging operations with traditional equipment (e.g. crane and clam shell) (CDM 2011c).

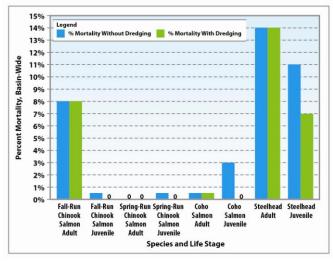

The most viable technology for removing sediment with these characteristics was identified as a barge-mounted hydraulic dredge working during reservoir drawdown. As water levels drop, dredging would be concentrated along the former river and tributary channels, and the adjacent terraces that may eventually slump into these channels, to remove as much of the potentially erodible sediment as possible. When and where possible, dredges would be operated in less than 25 feet of water where they are most efficient, reliable,

Figure 4.1-37: Comparison of Suspended Sediment Concentrations at Iron Gate Dam With and without Sediment Dredging.

Source: Stillwater Sciences 2011a

Figure 4.1-38: Comparison of Estimated Fish Mortality Impacts With and Without Sediment Dredging.

Source: Stillwater Sciences 2011a

and cost effective. This type of dredging operation would remove a maximum of 43 percent of the erodible sediment (2.8 million cubic yards); this number could be less if mechanical problems developed, winter weather slowed operations (e.g. reservoir ice cover at J.C. Boyle), or cultural resources were disturbed during dredging operations (CDM 2011c).

With this technology, dredged material would be transported via a slurry pipeline to diked containment areas near the reservoirs. The volume of sediment dredged would require about 300 acres of containment areas and approximately 20-foot high dikes, assuming water could be decanted back into the reservoirs, or nearly twice that amount of land area if decanting was not permissible (CDM 2011c). Regardless of what type of sediment dewatering system would be used, construction of hundreds of acres of sediment containment areas would disturb terrestrial resources and could potentially disturb cultural resources.

With hydraulic dredging, the amount of sediment eroded downstream would be reduced by 2.8 million cubic yards, decreasing suspended sediment concentrations downstream. Figure 4.1-37 shows the effect of dam removal on TSS concentrations below Iron Gate Dam for a median flow year, with and without reservoir dredging (Stillwater Sciences 2011a). Peak TSS concentrations decrease significantly with dredging, estimated at about 11,000 mg/L without dredging decreasing to about 5,000 mg/L with dredging. Both scenarios, however, produce TSS concentrations that would be high enough, and of long duration (January through March 15) during reservoir drawdown, to be lethal or highly stressful to fish in the Klamath River, particularly immediately downstream of Iron Gate Dam. Figure 4.1-38 compares the basin-wide percent mortality of adult and juvenile Chinook salmon, coho salmon, and steelhead for a median flow year with and without dredging (Stillwater Sciences 2011a). Reductions in basin-wide fish mortality associated with reduced TSS concentrations from dredging would be relatively small, remaining unchanged at 8 percent for fall-run adult Chinook, decreasing from 3 percent to negligible for juvenile coho salmon, remaining unchanged for adult steelhead at 14 percent, and decreasing from 11 percent to 7 percent for juvenile steelhead. Mortality of the other life stages of Chinook and coho salmon shown in Figure 4.1-38 are less than one percent and would not be influenced by sediment dredging. As noted earlier, the percent basin-wide mortalities are generally low for both scenarios because most life stages of fish are not present in the main-stem Klamath River in peak numbers during the proposed time of reservoir drawdown (see Figure 4.1-31) (Stillwater Sciences 2011a).

An Opinion of Probable Construction Cost (OPCC) (CDM 2011d) for the dredging operation described above would be about \$97 million in 2011 dollars. Escalating this figure to 2020 dollars (3 percent compounded annually), the cost estimate would be about \$127 million at the time of dredging. The OPCC estimates did not include design engineering, construction oversight, legal fees, land acquisition fees, and site restoration (e.g. re-vegetation), that typically cost an additional 30 percent, which result in an estimated cost of \$165 million (in 2020 dollars) for reservoir dredging.

Based on a number of factors, including the marginal reductions in mortality of fish, the land disturbance that would occur for sediment containment structures, the potential disturbance of cultural resources, and the high cost of the dredging operation, dredging reservoir bottom sediments was deemed infeasible (Lynch 2011). In lieu of dredging, mitigation measures (e.g. trapping and relocating potentially affected fish during dam removal) were identified to minimize effects to aquatic species from sediment release associated with dam removal and to be significantly more cost effective.

4.1.3.3 Mitigation Actions

It is anticipated that the short-term effects of dam removal (low dissolved oxygen and high SSCs) would result in some mortality of salmonids within and downstream of the hydroelectric reach. Other species, including lamprey and freshwater mussels, would be affected directly as well. The primary mitigation action for reducing impacts is timing reservoir drawdown and dam removal to minimize impacts on anadromous salmonids during adult and smolt migrations to and from tributaries. Additional mitigation measures that would be implemented as part of dam removal are described in Section 4.2.

Deleterious short-term effects of dam removal on mainstem spawning could be reduced by capturing migrating adult fish (Chinook, coho, steelhead, or Pacific lamprey) in the mainstem Klamath River during the fall preceding dam removal (2019) and relocating them to suitable habitat. Capture of adult fish could be accomplished with the use of an Alaskan-style weir and box trap, similar to that currently used at the Willow Creek, Trinity River site. Fish could be released either in tributaries downstream of Iron Gate Dam (e.g., Scott River), or in tributaries upstream of Iron Gate Dam if that were consistent with post-dam removal management goals. Effects on adults could also be reduced by increasing river flows during fall 2019, prior to dam removal. It has been

4.1 Expected Effects of Dam Removal and KBRA on Physical, Chemical, and Biological Processes that Support Salmonid and Other Fish Populations

observed that increased flows in the fall stimulate the migration of post-spawned green sturgeon out of the Klamath River (Benson et al. 2007). Additionally, increased fall flows might increase the rate and proportion of fall-run Chinook salmon, steelhead, and coho salmon spawning in tributaries

Figure 4.1-39: Fish rescue locations to mitigate for potential impacts from sediment release with dam removal.



Figure 4.1-40: Fish rescue operations would include out-migrant traps such as these two operating in the Shasta River.

rather than the mainstem Klamath River; this might reduce the proportion of the population that would be exposed to elevated SSCs in the mainstem during their migration period (Stillwater Sciences 2009).

The protection of outmigrating juvenile salmon is particularly important to off-set the likelihood of direct mortality of a portion of juvenile Chinook salmon, coho salmon, and steelhead present during dam removal activities. To this end, rescue of outmigrating juveniles before they enter the mainstem Klamath River during the spring following drawdown could be conducted at key tributaries documented to have a high abundance of juvenile salmonids and located within the area of highest predicted SSCs (see Figure 4.1-39). Rescued fish would be transported downstream, released in locations possessing suitable water quality, and allowed to continue their downstream migration to the ocean. Traps are currently in operation at some of these locations (see Figure 4.1-40); these traps would be operated more aggressively (e.g., weir panels to direct fish to traps) to capture a higher percentage (greater than 50 percent) of outmigrating fish. It is anticipated that this measure alone could reduce the mortality of juvenile salmonids by 50 percent or more.

Deleterious short-term effects on outmigrating hatchery coho salmon and steelhead trout yearling releases could be reduced by adjustments to hatchery management. Hatchery managers could adjust or delay the release of these yearlings during spring 2020. Although it would be out of synch with natural life history timing, if yearlings were released later (e.g., mid-May), impacts associated with high SSCs earlier in the spring could be reduced.

While there is some uncertainty, lamprey may experience some mortality in the short term as a result of dam removal. Mitigation for short-term lamprey mortality would involve salvage of larval lamprey from preferred habitat areas, where impacts are predicted to be highest, and relocation to suitable habitats (with current low occurrences of lamprey) in tributaries upstream or upstream of J.C. Boyle Reservoir.

It is anticipated that short-term effects of dam removal would result in mostly sublethal, and in some cases lethal impacts on Lost River and shortnose suckers in the project reservoirs. Adult Lost River and shortnose suckers in the reservoirs downstream of Keno Dam could be captured and relocated to Upper Klamath Lake.

Freshwater mussels in the Klamath Hydroelectric Reach and in the lower Klamath River, downstream of Iron Gate Dam, would likely be adversely affected by elevated SSCs and bedload movement during the latter part of reservoir drawdown. Freshwater mussels cannot move to avoid these impacts. Mitigation for this effect would involve relocation of freshwater mussels to tributary streams or the mainstem river upstream of the Klamath Hydroelectric Reach, followed by relocation to their approximate location or to other suitable habitat in the river after dam removal was completed.

4.1.4 Summary of Effects on Fisheries and Fish Species

Anadromous fish populations in the Klamath Basin are in decline, primarily as a result of blocked access to their historical habitat, overfishing, degraded freshwater and marine habitat, disease, water quality (including temperature), and altered hydrology. During the Secretarial Determination process, the TMT used a variety of analytical tools, both qualitative and quantitative, to assess the expected effects of a dam removal with KBRA implementation scenario on salmonids and other fish populations within the Klamath River. The TMT concluded that dam removal and KBRA implementation would improve fish populations primarily by increasing access to historical habitat, restoring mainstem and tributary habitat, and by improving key biological and physical factors that heavily influence fish populations (e.g., hydrology, sediment transport, and water quality).

In the short-term, reservoir drawdown associated with dam removal would result in the release of high concentrations of suspended sediment. Although short in duration, this suspended sediment release is expected to result in some lethal and sublethal effects on a proportion of fish populations, in particular, coho salmon smolts and steelhead trout in the mainstem Klamath River downstream of Iron Gate Dam (see Figure 4.1-36). However, the timing of drawdown (early January) was selected to coincide with periods of naturally high SSCs in the Klamath River, to which aquatic species have adapted by avoiding or tolerating. In addition, based on the distribution and life-history timing of aquatic species in the basin, only a portion of some populations are likely to be present in the mainstem Klamath River during the period of greatest SSCs (January through February), with most species located in refuge habitat in tributaries, or further downstream where concentrations would be diluted by accretion flows or in the Pacific Ocean. In the long term coho salmon, steelhead trout and other native anadromous species are anticipated to increase in abundance and viability.

SECTION 4 • Secretarial Determination Findings of Technical Studies

4.1 Expected Effects of Dam Removal and KBRA on Physical, Chemical, and Biological Processes that Support Salmonid and Other Fish Populations

Fish modeling results show that removal of the dams, combined with restoration of aquatic habitats as anticipated in the KBRA, is expected to increase the annual production of adult Chinook salmon by an average of 83 percent. The Chinook salmon ocean commercial and sport harvests are also forecasted to increase by an average of 50 percent, while the in-river tribal harvest would increase by an average of 59 percent and the in-river recreational fishery would increase by an average of 9 percent after dam removal. Based on available information, there are notable challenges inherent to anticipating the alterations in ecological processes; thus, there is a wide range in the predicted exact increases in fish population abundance or fish harvest opportunities. It is clear, however, that leaving the dams in place would result in the further decline of fisheries populations in the Klamath Basin. As noted by the expert panels convened to independently assess whether dam removal would advance restoration of the Klamath Basin salmonid fisheries, a dam removal with KBRA implementation would better address the core factors that affect fish populations and would have a much higher likelihood of success compared to the continuation of current conditions. Overall, dam removal and implementation of the KBRA would be a major step forward to restoring anadromous fish and conserving of native fish populations in the Klamath Basin.

4.2 DAM REMOVAL DETAILED PLAN AND ESTIMATED COST

Removal of the Four Facilities required development of a detailed deconstruction plan, titled *Detailed Plan for Dam Removal – Klamath River* Dams (Reclamation 2011b). This plan, which is the foundation for much of the material summarized in this section, integrates requirements in the KHSA for hydroelectric operations through 2019; considers the full range of flow conditions that could be encountered during dam removal; considers the unique features of each dam and each reservoir (see Table 4.2-1); and, includes drawdown rates that minimize bank slumping in reservoirs as well as the need to minimize impacts on the ecosystem.

In particular, the plan for reservoir drawdown and facilities removal was designed to minimize impacts on fish species and to protect threatened coho salmon. These goals resulted in a plan to drawdown the three larger reservoirs in the winter of a single year (2020). The *Detailed Plan for Dam Removal* ensures that the majority of reservoir sediments are transported downstream in January through March 15 when coho salmon as well as several other native species are not present in large numbers in the mainstem river (see Life Cycle part of Figure 4.1-35). Drawdown in January and February was also selected in the Detailed Plan for Dam Removal (Reclamation 2011b) because of likely high flows that would initially erode the fine-grained sediments in the reservoirs and continued high flows basin wide through the month of April to carry those sediments to the ocean (see Figure 4.2-1).

Timing of the removal of the Four Facilities (e.g., dams, powerhouses, and penstocks) differs depending on the "dam type" (see Table 4.2-1), such as concrete versus earthfill embankment, and whether a feature to be removed is in the flood plain. Features in a floodplain, or features that could be compromised by a high-flow event would be removed in the summer of 2020.

Table 4.2-1 provides the basic information for each of the Four Facilities built during the 40-year period of their construction.

Dam Removal Entity (DRE)

The DRE is the entity with primary responsibility for carrying out the dam removal and other components of the KHSA. The DRE would be identified by the Secretary of the Interior.

Figure 4.2-1: Chart of the median daily flows in the Klamath River at specific USGS gages.
Reservoir drawdown and is planned to occur from January through March 15 (2020), coinciding with typically high flows in the Klamath River.

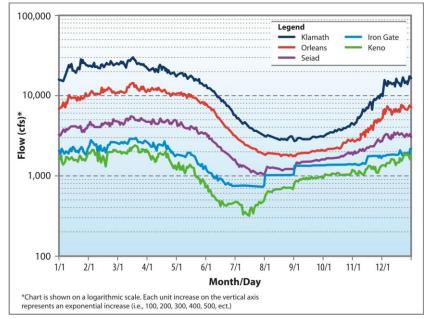


Table 4.2-1: General information of Four Facilities on the Klamath River

	J.C. Boyle	Copco 1	Copco 2	Iron Gate
Year Operational	1958	1922	1925	1962
Location (RM)	224.7	198.6	198.3	190.1
Dam Type	Concrete & Earthfill Embankment	Concrete	Concrete	Earthfill Embankment
Dam Maximum Height	68 feet	135 feet	33 feet	189 feet
Dam Crest Length	692 feet	410 feet	335 feet	740 feet
Reservoir Surface Area	420 acres	1,000 Acres	N/A	944 Acres
Reservoir Storage Volume	2,629 acre-feet	40,000 acre-feet	73 acre-feet	53,800 acre-feet
Spillway Type	Overflow Spillway with Control Gates & Diversion Culvert	Overflow Spillway with Control Gates & Diversion Tunnel	Overflow Spillway with Control Gates	Uncontrolled Overflow Spillway and Diversion Tunnel
Maximum Power Capacity (Megawatts)	98	20	27	18

Source: FERC 2007, Reclamation 2011e

In its analysis, Reclamation (2011b) analyzed and provided estimated costs for two scenarios: (1) full facilities removal, and (2) partial facilities removal. Full facilities removal is described as the removal of all features of dam facilities with the exception of buried features. Partial facilities removal is defined as the

Figure 4.2-2: Photos of J.C. Boyle Dam and Reservoir with specific components labeled. With full facilities removal, all visible components would be removed. With partial facilities removal, certain components (e.g., steel conveyance pipe) would be retained.

mage from Klamath Riverkeeper

Image from Klamath Riverkeeper

removal of the main dam structure to allow a freeflowing river and full volitional fish passage, while some related facilities and/or abutments would be retained. It is assumed that all retained structures would be either sealed or fenced for safety reasons and would require long-term maintenance.

4.2.1 Dam Removal Engineering and Construction

4.2.1.1 J. C. Boyle Dam

The J.C. Boyle Development, the most upstream, PacifiCorp-owned, hydroelectric facility, includes the dam, reservoir, gated spillway, diversion culvert, water conveyance system, power generation facilities and powerhouse (see Figure 4.2-2).

The hydropower facility is used to produce peaking power (i.e., it generates power when demands are highest). Under the proposed plan, power generation would cease at J.C. Boyle on January 1, 2020. At that time, the Dam Removal Entity (DRE) (see sidebar) would begin to draw the reservoir down and remove the spillway gates, spillway bridge, and the concrete intake structure. This initial removal work would be completed before March 15, 2020, when spring runoff historically starts and sustained high flows would be present in the river.

Concurrent with dam removal, a cofferdam would be constructed to isolate and remove the powerhouse downstream. Features such as penstocks, switchyards, and other associated buildings could be removed during high flows because they are primarily in dry areas. The remaining portion of the dam, primarily the embankment dam, would be removed during the low flow period of the year, July through September, working from the top of the dam downward. The lowest portion of the dam embankment would be allowed to overtop and breach in a controlled fashion. The DRE would use the concrete and earth materials generated from the deconstruction first to fill the original borrow pits near the right abutment of the dam and then the downstream scour hole below the forebay spillway. The DRE would haul mechanical and electrical waste to a waste processing site near Klamath Falls, Oregon (Reclamation 2011b).

Partial Removal

With partial facilities removal, portions of the facilities and ancillary structures associated with J.C. Boyle Dam would be left in place (see Figure 4.2-3). Table 4.2-2 below provides the list of facilities that would either be retained or removed as part of partial facilities removal. The primary features remaining include the powerhouse, canal intake structure, steel pipeline, and multiple buildings at the site (Reclamation 2011b).

Challenges Associated with the Removal of J.C. Boyle Dam

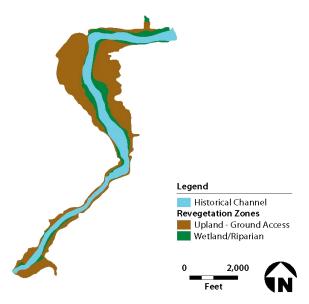
There are several potential challenges identified for the removal of J.C. Boyle Dam (Reclamation 2011b):

- Potential for high flows in the Klamath River
- Potential for the reservoir to freeze, affecting drawdown
- Removal of concrete stoplogs for controlled diversion release

Table 4.2-2: Partial Removal of J.C. Boyle Dam

Feature	Action
Embankment Dam, Cutoff Wall	Remove
Spillway Gates and Crest Structure	Remove
Fish Ladder	Remove
Steel Pipeline and Supports	Retain
Canal Intake (Screen) Structure	Retain
Left Concrete Gravity Section	Retain
Power Canal (Flume)	Remove Walls
Shotcrete Slope Protection	Retain
Forebay Spillway Control Structure	Remove
Tunnel Inlet Portal Structure	Remove
Surge Tank	Remove
Penstocks, Supports, Anchors	Remove
Tunnel Portals	Concrete Plug
Powerhouse Gantry Crane	Remove
Powerhouse Substructure/Slab	Retain
Powerhouse Hazardous Materials (Transformers,	Remove
batteries, insulations, petroleum products)	
Tailrace Flume Walls	Retain
Tailrace Channel Area	Partial Backfill
Canal Spillway Scour Area	Partial Backfill
69-kV Transmission Line, 0.24 miles	Remove
Switchyard	Remove
Warehouse, Support Buildings	Remove Some

Figure 4.2-3: Partial removal would provide a free flowing river and allow full volitional fish passage. However, certain structures would be retained.



Challenges Associated with the Restoration of the Reservoir Basins

The challenges for restoration of the three reservoirs include the following (Reclamation 2011b):

- The need to use a mixture of barges, trucks, and aerial applicators for hydroseeding.
- Exact dates and methods for revegetation are subject to weather conditions and flow forecasts.
- Difficult terrain, slopes, and stability for ground equipment.
- Weed control.

Figure 4.2-4: Potential locations for revegetation in J.C. Boyle Reservoir. Revegetation efforts would be focused as shown below.

Source: Reclamation 2011b

Reservoir Management of J.C. Boyle

With dam removal, and the associated drawdown of the reservoir, there would be significant erosion of the reservoir sediment. The DRE would begin revegetation efforts with the goal of establishing sustainable riparian, wetland, and upland habitats on the newly exposed reservoir sediment. Reclamation (2011b) performed a study and provided a detailed plan on the reservoir restoration activities.

In order to limit the impacts of erosion, various methods of hydroseeding (including application from ground, barge, and aerial-based equipment) would be employed by the DRE. Seed mixes would include specific applications for native grasses, riparian plantings, and wetland vegetation. Locations for hydroseeding would vary for each of the reservoirs.

In J.C. Boyle Reservoir, the majority of the reservoir sediment has accumulated near the dam, and is expected to be flushed downstream at the time of dam removal. It is also expected that sediment would be eroded from the steep slopes of the reservoir bottom. Potential locations for revegetation in J.C. Boyle Reservoir are shown in Figure 4.2-4. Estimated costs are presented in Table 4.2-4 (Reclamation 2011b).

Recreational Facilities Removal at J.C. Boyle

With either full or partial facilities removal, the DRE would remove or modify a number of recreational facilities adjacent to the existing reservoir. Modification of these facilities is necessary as they are adjacent to the reservoir, which would no longer be present following dam removal (see Table 4.2-3).

Table 4.2-3: Existing Recreational Facilities Adjacent to J.C. Boyle Reservoir

Recreational Site	Estimated Use (2001/2002) ¹	Existing Facilities	Facilities After Dam Removal ²
Pioneer Park (East & West Units)	16,700	Two day-use areas with picnic tables, fire rings, and portable toilets	All Facilities would be removed.
Topsy Campground	5,600	Campground, day-use area, boat launch	Removal of the boat launch, floating dock, and fishing pier. The remainder will be retained for public use.

¹ In "recreational days".

² Sites where facilities would be removed would be regraded, seeded, and planted.

Mitigation Actions

Several mitigation actions have been identified to lessen the potential impacts of the dam removal process throughout the Klamath Basin. As described in Sections 4.2.1.2, 4.2.1.3, and 4.2.1.4 below, many of the following mitigation measures would be applicable to all of the dams and reservoirs. Additional mitigation actions may be identified at a later date in a "Definite Plan" for dam removal if there is an Affirmative Secretarial Determination. Moreover, a Record of Decision (ROD) on removal of the Four Facilities could include additional mitigation actions not discussed in this report. Additional mitigation actions would likely increase the estimated cost for dam removal.

Fish Relocation

As described in Section 4.1.3.2, Short Term Effects on Fisheries from Dam Removal, Mitigation Actions, aquatic species would be captured and relocated in order to reduce mortality. Aquatic species that would be relocated include juvenile outmigrating salmonids, suckers, and Pacific lamprey. Relocation of sucker would be applicable to J.C. Boyle.

Culturally and Historically Significant Sites

Cultural resources investigations (records searches and review of archaeological, ethnographic, and historic information) identified 681 sites within the Klamath Basin. Sixty-eight of these sites are recommended to be eligible for inclusion on the National and California Registers of Historic Places. The eligibility of the other 613 sites for inclusion on either register has not been determined. Upon completion of future investigations it is probable that some of these sites would be determined eligible for inclusion on the National and/or California Registers. Consequently, mitigation actions are necessary to protect these sites from impacts associated with dam removal.

Development of New or Modification of Existing Recreational Facilities

The DRE, in consultation with state and federal agencies, would produce a plan to update existing and develop new recreational facilities and river access points to replace the facilities that would be removed with dam removal. Modifications would include the development of new river access points; upgrades and expansions to existing campgrounds and facilities; and, the redesign and reconstruction of removed facilities.

Fencing

The DRE would install a fence to reduce the impacts on newly exposed Parcel B lands in the Klamath Basin (defined in the Section 4.4.7, *Real Estate*) and for the protection of the revegetation and restoration efforts in the reservoirs. In addition, the installation of fences around Parcel B lands would protect both the property and the water quality in the river from free ranging cattle. Fences would be installed on Parcel B lands that border private properties. Existing fence lines would be used as much as possible and it is assumed that these would not be replaced.

Understanding the Estimated Costs

Costs estimates were completed using engineering design principles for the removal of each of the four dams and associated mitigation actions. The following are definitions of specific terms used in these costs estimates:

- Most Probable Cost Estimate: A compilation of pay items, quantities, and unit prices representing the Designer's and Cost Estimator's best or most likely opinion and assessment of the scope of work and cost for the project.
- Life Cycle Cost Estimating: Is an analysis to determine the long-term cost of ownership over a defined period of time. The life cycle cost estimate includes any initial capital cost investment, operational costs, maintenance costs, and any periodic replacement costs. All costs as presented in a life cycle cost estimate are computed and represented as present value totals based on a specific discount rate. The base assumption for dam removal is that. with full removal, all facilities would be removed; therefore, there would be no requirement for long-term operation and maintenance. With partial removal, remaining facilities would require maintenance over the analysis period, assumed to be 50
- **Monte Carlo-based Simulation** Process (Used To Determine the Forecast Range): As described by Reclamation (2011b), "Total Costs developed and evaluated using a Monte Carlo – based simulation process. Monte Carlo simulation is a problem-solving technique used to approximate the probability of certain outcomes by running multiple trials using random variables, called simulations. It is based on a computerized mathematical technique that accounts for risk in quantitative analysis and decisionmaking. Monte Carlo simulations furnish the decision maker with a range of possible outcomes and the probabilities with which they would occur for any choice of action."

Culvert Relocation

Reservoir drawdown would affect culverts that are adjacent to the reservoirs. The culverts would be modified to prevent scour damage and headcutting.

Wetland Replacement

Due to the reservoir drawdown, there would be a permanent loss of approximately 245 acres of wetland habitat surrounding the Four Facilities. If a Section 404 Permit under the CWA is required, a mitigation plan would also be required for the loss of wetlands. The DOI analysis assumes that dam removal activities would be authorized under a U.S. Army Corps of Engineer's Nationwide Permit because the objective of the project is the restoration of the basin. Under a U.S. Army Corps of Engineer's Nationwide Permit, mitigation activities would be designed to protect or replace habitats affected by construction activities. A remote sensing analysis performed by the DOI determined that 0 to 20 acres would be directly affected by construction activities.

Bat Habitat Replacement

Removal of the structures associated with the Four Facilities, and associated construction activities, would displace resident bats. Mitigation actions for the displacement would include conducting bat surveys prior to construction activities to determine bat use patterns. Replacement habitats (roosts) would be provided near each dam site.

Estimated Costs

Estimated costs are presented for full facilities removal (see Table 4.2-4) and partial facilities removal (see Table 4.2-5). These tables present the most probable costs for the physical removal of J.C. Boyle Dam, the restoration of the reservoir, the removal of adjacent recreational facilities, and the mobilization of equipment and contingencies associated with the action. The cost estimate for partial facilities removal includes the life cycle cost associated with maintenance of facilities that are not removed.

Table 4.2-4. Estillated Costs for the run Removal of J.C. Boyle Dam (2020 Dollars)	Table 4.2-4: Estimated Costs for the Full Removal of J.C. Boyle Dam (2020 Doll	ars) ⁶
--	--	-------------------

	Fore	cast Range⁵	
	Minimum (Less than a 1% Chance the Actual Cost will be Below this Estimate)	Maximum (Less than a 1% Chance the Actual Cost will be Above this Estimate)	Most Probable ¹
Dam Facilities Removal			\$17,769,070
Reservoir Restoration			\$2,738,500
Recreational Facilities Removal			\$89,480
Mobilization and Contingencies ²			\$9,958,175
Escalation to January 2020			\$7,444,775
Subtotal (Field Costs)	\$30,900,000	\$63,900,000	\$38,000,000
Engineering (20%) ³			\$7,600,000
Mitigation (35%) ⁴			\$13,400,000
Total Construction Cost	\$47,400,000	\$98,300,000	\$59,000,000

Source: Reclamation 2011b

- ¹ The most probable costs were used in the Economics analysis (See Section 4.4.1).
- Mobilization and Contingencies includes the mobilization of construction equipment to the dam site, design contingencies and construction contingencies.
- Engineering costs include design data, engineering designs, permitting, procurement, construction management, and closeout activities.
- ⁴ Mitigation includes environmental mitigation, monitoring, and cultural resources preservation.
- ⁵ The Minimum and Maximum ranges were determined using a Monte Carlo-based Simulation Process. See "Understanding the Estimated Costs" Side Bar.
- An allowance for escalation for a period of 10 years, from the July 2010 price level to July 2020, was included in the cost estimates. The Most Probable cost estimates used an escalation rate of 3 percent per year, compounded annually, over 10 years. The 3 percent annual escalation rate used to measure the effects of inflation for future construction costs from July 2010 through July 2020 was based on Reclamation's Construction Cost Trends, OMB Circular No. A-94, other published historical data, and professional judgment.

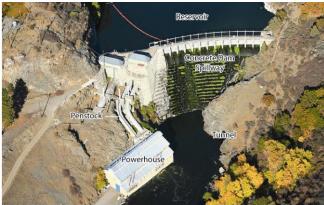
Table 4.2-5: Estimated Costs for the Partial Removal of J.C. Boyle Dam (2020 Dollars)

	Foreca	st Range⁵	
	Minimum (Less than a 1% Chance the Actual Cost will be Below this Estimate)	Maximum (Less than a 1% Chance the Actual Cost will be Above this Estimate)	Most Probable ¹
Dam Facilities Removal			\$10,824,805
Reservoir Restoration			\$2,738,500
Recreational Facilities Removal			\$89,480
Mobilization and Contingencies ²			\$6,417,935
Escalation to January 2020			\$4,929,280
Subtotal (Field Costs)	\$19,900,000	\$45,100,000	\$25,000,000
Engineering (20%) ³			\$7,600,000
Mitigation (45%) ⁴			\$13,400,000
Total Construction Cost	\$31,800,000	\$76,400,000	\$41,000,000
Total Life Cycle Cost ⁶	\$4,900,000	\$14,700,000	\$6,800,000

- The most probable costs were used in the Economics analysis (See Section 4.4.1).
- ² Mobilization and Contingencies includes the mobilization of construction equipment to the dam site, design contingencies and construction contingencies.
- Engineering costs include design data, engineering designs, permitting, procurement, construction management, and closeout activities.
- ⁴ Mitigation includes environmental mitigation, monitoring, and cultural resources preservation.
- ⁵ The Minimum and Maximum ranges were determined using a Monte Carlo-based Simulation Process. See "Understanding the Estimated Costs" Side Bar.
- Life cycle costs are the long-term cost of ownership over a defined period of time (50 years). See "Understanding the Estimated Costs" Side Bar.
- An allowance for escalation for a period of 10 years, from the July 2010 price level to July 2020, was included in the cost estimates. The Most Probable cost estimates used an escalation rate of 3 percent per year, compounded annually, over 10 years. The 3 percent annual escalation rate used to measure the effects of inflation for future construction costs from July 2010 through July 2020 was based on Reclamation's Construction Cost Trends, OMB Circular No. A-94, other published historical data, and professional judgment.

Challenges Associated with the Removal of Copco 1 Dam

There are several potential challenges for the removal of Copco 1 Dam (Reclamation 2011b):


- Potential for high flows in the Klamath River
- Deconstruction difficulty due to large boulders and steel rails embedded in the concrete
- Confined work area with one-way construction traffic and difficult access for concrete removal
- Modification of gated diversion tunnel for controlled releases during drawdown
- Breach of large concrete dam to stream channel between January 1 and March 15

4.2.1.2 Copco 1 Dam

Full facilities removal would include removal of the concrete dam, concrete water intake structure, concrete gate houses, penstock pipes and supports, powerhouse, power generation support facilities, switchyard, and unused transmission lines (see Figure 4.2-5). Reservoir drawdown would begin in November 2019, and power generation would cease prior to the January 1, 2020 start date under the KHSA. Reservoir drawdown would be initiated with flow over the gated spillway and further drawdown by modifying the existing diversion tunnel. This initial drawdown in November is not expected to release a significant amount of sediment and would allow initial deconstruction work to begin. Once in the dry, and no longer needed for flow control, the spillway gates, bridge deck and piers could be removed from the top of the dam using a barge-mounted crane.

Reservoir drawdown would continue in January 2020 through the diversion tunnel. Removal of the concrete dam would begin by removing horizontal lifts of concrete in approximately 8-foot-high layers. As the diversion tunnel flow capacity decreased, further reservoir drawdown would be accomplished by removing rectangular notches in the dam to allow the reservoir to fully drain. The notches would be at least 10 feet wide and a minimum of 16 feet deep. The notches would continue to the bottom of the dam as necessary for reservoir drawdown and concrete dam removal. The powerhouse would be removed during summer low flows after the dam was removed.

Figure 4.2-5: Photo of Copco 1 Dam and Reservoir with specific components labeled. With full facilities removal, all visible components would be removed. With partial facilities removal, certain components (e.g., penstock) would be retained.

It is expected that the DRE would bury the concrete debris within an on-site disposal area near the right abutment. The DRE would separate the reinforcing steel from the concrete and haul it to a local recycling facility in Weed, California. The DRE would haul mechanical and electrical equipment to Yreka, California for transfer to a salvage company or disposal outside the project boundaries (Reclamation 2011b).

Partial Removal

Partial facilities removal would include preservation of portions of the facilities associated with Copco 1 Dam (see Figure 4.2-6). This would primarily entail leaving the powerhouse, penstocks, and powerhouse intake structure in place. Table 4.2-6 provides the list of facilities that would either be retained or removed as part of partial facilities removal.

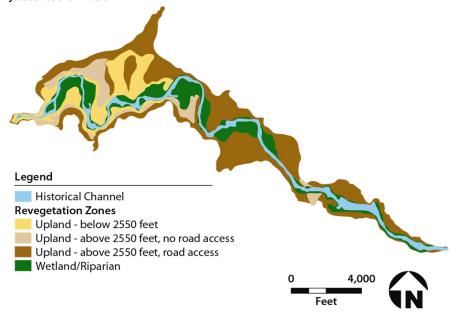
Table 4.2-6: Partial Removal of Copco 1 Dam

Feature	Action
Concrete Dam	Remove to 5 feet
	below channel
Spillway Gates, Deck, Piers	Remove
Penstocks	Retain
Powerhouse Intake Structure	Retain
Gate House on Right Abutment	Retain
Diversion Control Structure	Retain
Tunnel Portals	Close Gates
	Concrete Plug
Powerhouse	Retain
Powerhouse Hazardous Materials	Remove
(transformers, batteries, insulation)	
Two 69-kV Transmission Lines, 0.7	Remove
mile	
Switchyard	Remove
Warehouse and Residence	Remove

Figure 4.2-6: Partial removal would provide a free flowing river and allow full volitional fish passage. However, certain structures would be retained.

Reservoir Management in Copco 1 Reservoir

In Copco 1 Reservoir, the majority of the erosion would occur in the main channel of the reservoir where the thickness of the sediment would be the greatest. This erosion is expected to occur during the first few months of 2020. As described above for reservoir management at J.C. Boyle Dam, hydroseeding would minimize the erosion. Hydroseeding at Copco 1 Reservoir would begin immediately following reservoir drawdown, in the spring of 2020, with reseeding during the fall of that year (Reclamation 2011b).


Recreational Facilities Removal at Copco 1

With either full or partial facilities removal, the DRE would remove or modify a number of recreational facilities adjacent to the existing reservoir. Modification of these facilities is necessary as they are adjacent to the reservoir, which would no longer be in existence (see Table 4.2-7).

Table 4.2-7: Existing Recreational Facilities Adjacent to Copco 1 Reservoir

Recreational Site	Estimated Use (2001/2002) ¹	Existing Facilities	Facilities After Dam Removal ²
Mallard Cove	7,600	Day-use picnic area and boat launch	All facilities would be removed.
Copco Cove	1,250	Picnic area and boat launch	All facilities would be removed.

Figure 4.2-7: Potential locations for revegetation in Copco 1 Reservoir. Revegetation efforts would be focused as shown below.

¹ In "recreational days".

² Sites where facilities would be removed would be regraded, seeded, and planted.

Mitigation Actions

Several mitigation actions have been identified to lessen the potential impacts of the dam removal process. As described for J.C. Boyle Dam above, the following mitigation actions would also be required:

- Relocate Suckers
- Culvert Relocation
- Protect Culturally and Historically Significant Sites
- Develop New or Modify
 Existing Recreational Facilities
- Install Fencing
- Install Bat Roosts to Replace Lost Habitat

In addition to these mitigation actions, the following additional action would be applicable to the removal of Copco 1 Dam.

Groundwater Wells

With the loss of the reservoirs, localized groundwater levels around the dams would decrease and would affect existing domestic or irrigation wells. This mitigation action would deepen wells and restore their production rates to predam removal conditions. Data on all wells within 2.5 miles of the reservoirs at the Four Facilities were collected and analyzed for potential impacts. Reclamation identified approximately 15 wells that were most likely to be affected.

Estimated Costs

Estimated costs are presented for full facilities removal (see Table 4.2-8) and partial facilities removal (see Table 4.2-9) of Copco 1 Dam. The estimated cost tables present the most probable costs for the physical removal of Copco 1 Dam, the restoration of the reservoir, the removal of adjacent recreational facilities, and the mobilization of equipment and contingencies associated with the action. The cost estimate for partial facilities removal includes the life cycle cost associated with maintenance of the remaining facilities.

Table 4.2-8: Estimated Costs for the Full Removal of Copco 1 Dam (2020 Dollars)⁶

	Forecast Range ⁵		
	Minimum (Less than a 1% Chance the Actual Cost will be Below this Estimate)	Maximum (Less than a 1% Chance the Actual Cost will be Above this Estimate)	Most Probable ¹
Dam Facilities Removal			26,710,485
Reservoir Restoration			9,658,000
Recreational Facilities Removal			187,100
Mobilization and Contingencies ²			18,236,105
Escalation to January 2020			13,208,310
Subtotal (Field Costs)	60,100,000	106,400,000	68,000,000
Engineering (20%) ³			13,500,000
Mitigation (35%) ⁴			23,500,000
Total Construction Cost	89,400,000	169,700,000	105,000,000

Source: Reclamation 2011b

- ¹ The most probable costs were used in the Economics analysis (See Section 4.4.1).
- Mobilization and Contingencies includes the mobilization of construction equipment to the dam site, design contingencies and construction contingencies.
- Engineering costs include design data, engineering designs, permitting, procurement, construction management, and closeout activities.
- Mitigation includes environmental mitigation, monitoring, and cultural resources preservation.
- The Minimum and Maximum ranges were determined using a Monte Carlo-based Simulation Process. See "Understanding the Estimated Costs" Side Bar.
- An allowance for escalation for a period of 10 years, from the July 2010 price level to July 2020, was included in the cost estimates. The Most Probable cost estimates used an escalation rate of 3 percent per year, compounded annually, over 10 years. The 3 percent annual escalation rate used to measure the effects of inflation for future construction costs from July 2010 through July 2020 was based on Reclamation's Construction Cost Trends, OMB Circular No. A-94, other published historical data, and professional judgment.

Table 4.2-9: Estimated Costs for the Partial Removal of Copco 1 Dam (2020 Dollars)⁷

	Forecas	t Range⁵	
	Minimum (Less than a 1% Chance the Actual Cost will be Below this Estimate)	Maximum (Less than a 1% Chance the Actual Cost will be Above this Estimate)	Most Probable ¹
Dam Facilities Removal			15,770,000
Reservoir Restoration			9,658,000
Recreational Facilities Removal			187,100
Mobilization and Contingencies ²			13,128,356
Escalation to January 2020			9,256,544
Subtotal (Field Costs)	40,800,000	75,200,000	48,000,000
Engineering (20%) ³			9,500,000
Mitigation (45%) ⁴			21,500,000
Total Construction Cost	64,700,000	136,700,000	79,000,000
Total Life Cycle Cost ⁶	1,300,000	3,900,000	1,750,000

- ¹ The most probable costs were used in the Economics analysis (See Section 4.4.1).
- Mobilization and Contingencies includes the mobilization of construction equipment to the dam site, design contingencies and construction contingencies.
- Engineering costs include design data, engineering designs, permitting, procurement, construction management, and closeout activities.
- ⁴ Mitigation includes environmental mitigation, monitoring, and cultural resources preservation.
- 5 The Minimum and Maximum ranges were determined using a Monte Carlo-based Simulation Process. See "Understanding the Estimated Costs" Side Bar.
- ⁶ Life cycle costs are the long-term cost of ownership over a defined period of time (50 years). See "Understanding the Estimated Costs" Side Bar.
- An allowance for escalation for a period of 10 years, from the July 2010 price level to July 2020, was included in the cost estimates. The Most Probable cost estimates used an escalation rate of 3 percent per year, compounded annually, over 10 years. The 3 percent annual escalation rate used to measure the effects of inflation for future construction costs from July 2010 through July 2020 was based on Reclamation's Construction Cost Trends, OMB Circular No. A-94, other published historical data, and professional judgment.

4.2.1.3 Copco 2 Dam

With full facilities removal, the DRE would remove the dam, gated spillway, embankment, water intake structure, pipelines, penstock, powerhouse, power generation equipment, and unused transmission lines (see Figure 4.2-8). The switchyard would be retained to meet power supply requirements unrelated dam removal.

The Detailed Plan provides PacifiCorp with the ability to continue power generation through May 1, 2020. This longer period of power generation would be used to offset the loss of power generation at Copco 1 due to its early drawdown.

The DRE would start by removing the spillway gates and the spillway bridge using cranes and excavators. Next, a cofferdam would be constructed to isolate the left portion of the dam. The river flow would be routed through the right two spillway bays as the left two spillway bays would be removed using mechanical techniques. After the left portion was removed, the river would be diverted through the vacated structure and the right portion of the dam would be removed using similar mechanical techniques. The remaining reinforced concrete walls and water intake structure on the side of the river would be removed after the dam is

removed. The DRE would bury concrete rubble on the right abutment within an on-site disposal area. The DRE would handle and dispose of reinforcing steel, concrete, and mechanical equipment in the same manner as for the removal of the Copco 1 facilities.

The powerhouse downstream would be removed, along with the penstocks and power generation equipment. A cofferdam would be installed to isolate the powerhouse and the cofferdam would be incorporated into the final river bank restoration.

Figure 4.2-8: Photo of Copco 2 Dam and Reservoir with Specific Components Labeled. With full facilities removal, all visible components would be removed. With partial facilities removal, certain components (e.g., penstock) would be retained.

Images from Klamath Riverkeeper

Challenges Associated with the Removal of Copco 2 Dam

There are potential challenges for the removal of Copco 2 Dam including (Reclamation 2011b):

- Significant improvements to steep and narrow access road needed for construction equipment
- Potential for high flows in the Klamath River

Figure 4.2-9: Partial Removal Would Provide a Free Flowing River and Allow Full Volitional Fish Passage. However, certain structures would be retained.

Partial Removal

With partial facilities removal, the DRE would not remove all the facilities associated with Copco 2 Dam. Table 4.2-10 below provides the list of facilities that would either be retained or removed as part of partial facilities removal; the primary features that would remain would be the powerhouse and penstock pipes.

Table 4.2-10: Partial Removal of Copco 2 Dam

Feature	Action
Spillway Gates, Structure	Remove
Power Penstock, Intake	Retain
Structure	
Tunnel Portals	Concrete Plug; Close Gate
Embankment Section	Retain
Wood-stave Penstock	Remove
Concrete Pipe Cradles	Retain
Steel Penstock, Supports,	Retain
Anchors	
Powerhouse	Retain
Powerhouse Hazardous	Remove
Materials (transformers,	
batteries, insulation)	
69-kV Transmission Line	Remove
Switchyard	Retain
Tailrace Channel	Backfill

Source: Reclamation 2011b

Reservoir Management in Copco 2 Reservoir

Copco 2 Reservoir is a small impoundment that holds approximately 73 acre-feet of water. It has been assumed that revegetation of this particular reservoir site would not be needed.

Recreational Facilities Removal at Copco 2

No recreational facilities exist at the Copco 2 development.

Mitigation Actions

Mitigation actions have been identified to lessen the potential impacts of the dam removal process. The following mitigation actions, described previously for J.C. Boyle Dam, would be required:

- Install Bat Roosts to Replace Lost Habitat
- Protect Culturally and Historically Significant Sites
- Install Fencing

Estimated Costs

Estimated costs are presented for full facilities removal (see Table 4.2-11) and partial facilities removal (see Table 4.2-12). These tables present the most probable costs for the physical removal of Copco 2 Dam, the restoration of the reservoir, the removal of adjacent recreational facilities, and the mobilization of equipment and contingencies associated with the action. The cost estimate for partial facilities removal includes the life cycle cost associated with maintenance of the remaining facilities.

Table 4.2-11: Estimated Costs for the Full Removal of Copco 2 Dam (2020 Dollars)⁶

	Forecast Range⁵		
	Minimum (Less than a 1% Chance the Actual Cost will be Below this Estimate)	Maximum (Less than a 1% Chance the Actual Cost will be Above this Estimate)	Most Probable ¹
Dam Facilities Removal			8,436,910
Reservoir Restoration			0
Recreational Facilities Removal			0
Mobilization and Contingencies ²			4,017,054
Escalation to January 2020			3,046,036
Subtotal (Field Costs)	13,500,000	27,700,000	15,500,000
Engineering (20%) ³			3,100,000
Mitigation (35%) ⁴			5,400,000
Total Construction Cost	19,600,000	46,600,000	24,000,000

The most probable costs were used in the Economics analysis (See Section 4.4.1).

Mobilization and Contingencies includes the mobilization of construction equipment to the dam site, design contingencies and construction contingencies.

Engineering costs include design data, engineering designs, permitting, procurement, construction management, and closeout activities.

⁴ Mitigation includes environmental mitigation, monitoring, and cultural resources preservation.

⁵ The Minimum and Maximum ranges were determined using a Monte Carlo-based Simulation Process. See "Understanding the Estimated Costs" Side Bar.

An allowance for escalation for a period of 10 years, from the July 2010 price level to July 2020, was included in the cost estimates. The Most Probable cost estimates used an escalation rate of 3 percent per year, compounded annually, over 10 years. The 3 percent annual escalation rate used to measure the effects of inflation for future construction costs from July 2010 through July 2020 was based on Reclamation's Construction Cost Trends, OMB Circular No. A-94, other published historical data, and professional judgment.

Table 4.2-12: Estimated Costs for the Partial Removal of Copco 2 Dam (2020 Dollars)

	Foreca		
	Minimum (Less than a 1% Chance the Actual Cost will be Below this Estimate)	Maximum (Less than a 1% Chance the Actual Cost will be Above this Estimate)	Most Probable ¹
Dam Facilities Removal			3,872,090
Reservoir Restoration			0
Recreational Facilities Removal			0
Mobilization and Contingencies ²			1,929,171
Escalation to January 2020			1,398,739
Subtotal (Field Costs)	6,100,000	10,300,000	7,200,000
Engineering (20%) ³			1,500,000
Mitigation (45%) ⁴			3,300,000
Total Construction Cost	9,700,000	18,100,000	12,000,000
Total Life Cycle Cost ⁶	2,800,000	8,200,000	3,800,000

Source: Reclamation 2011h

- ¹ The most probable costs were used in the Economics analysis (See Section 4.4.1).
- Mobilization and Contingencies includes the mobilization of construction equipment to the dam site, design contingencies and construction contingencies.
- Engineering costs include design data, engineering designs, permitting, procurement, construction management, and closeout activities.
- ⁴ Mitigation includes environmental mitigation, monitoring, and cultural resources preservation.
- ⁵ The Minimum and Maximum ranges were determined using a Monte Carlo-based Simulation Process. See "Understanding the Estimated Costs" Side Bar.
- ⁶ Life cycle costs are the long-term cost of ownership over a defined period of time (50 years). See "Understanding the Estimated Costs" Side Bar.
- An allowance for escalation for a period of 10 years, from the July 2010 price level to July 2020, was included in the cost estimates. The Most Probable cost estimates used an escalation rate of 3 percent per year, compounded annually, over 10 years. The 3 percent annual escalation rate used to measure the effects of inflation for future construction costs from July 2010 through July 2020 was based on Reclamation's Construction Cost Trends, OMB Circular No. A-94, other published historical data, and professional judgment.

Figure 4.2-10: Photo of Iron Gate Dam and Reservoir with Specific Components Labeled. With full facilities removal, all visible components would be removed. With partial facilities removal, certain components (e.g., penstock) would be retained.

Image from Klamath Riverkeeper

4.2.1.4 Iron Gate Dam

With full facilities removal, the DRE would remove the earthen dam, diversion tunnel gate structure, concrete water intake structure, powerhouse generation facility, penstock and its concrete supports, unused transmission lines, and the switchyard (see Figure 4.2-10). The DRE would bury the concrete spillway to restore the pre-dam appearance of the right abutment.

In the year prior to the beginning of drawdown, the DRE would need to modify the diversion tunnel to increase the release capacity. This would be completed using a barge-mounted crane and divers.

Power generation would cease and reservoir drawdown would begin in January 2020. The DRE would draw down the reservoir by releasing water through the diversion tunnel. Dam removal would include removal of the fish handling facilities at the base of the dam, but the Iron Gate Fish Hatchery (per the KHSA) would remain in place. PacifiCorp would need to identify an alternate water source for the fish hatchery to remain operational because the water supply pipe from the penstock intake structure to the fish hatchery would be removed with the dam. PacifiCorp would fund hatchery operations for eight years after the decommissioning of Iron Gate Dam, after which time it would become the responsibility of CDFG.

After the spring runoff, the DRE would begin excavation of the embankment, working from the top of the dam downwards. The DRE would remove the riprap during embankment excavation. The DRE would then remove reinforced concrete from remaining structures (including intake structures, fish handling facilities, and powerhouse) using mechanical methods if possible or drilling and blasting if necessary. The lowest portion of the dam embankment would be allowed to overtop and breach in a controlled fashion.

The DRE would use earth and concrete debris to fill an original borrow site, less than 1 mile upstream from Iron Gate Dam. Excess debris, including reinforcing steel and mechanical and electrical equipment, would be disposed of in an approved local waste processing site (Reclamation 2011b).

Partial Removal

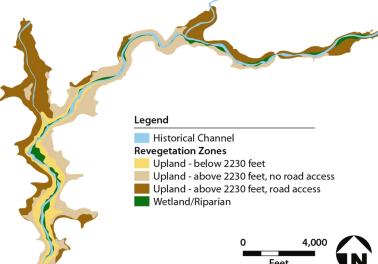
Table 4.2-13 provides the list of facilities that would either be retained or removed as part of partial facilities removal; the powerhouse would be the main feature remaining (see Figure 4.2-11).

Table 4.2-13: Partial Removal of Iron Gate Dam

Feature	Action
Embankment Dam, Cutoff Walls	Remove
Penstock Intake Structure	Remove
Penstock	Remove
Water Supply Pipes	Remove
Spillway Structure	Retain, Bury
Powerhouse	Retain, Bury
Powerhouse Hazardous Materials	Remove
(Transformers, Batteries,	
Insulation)	
Powerhouse Tailrace Area	Backfill
Fish Facilities on Dam	Remove
Fish Hatchery	Retain
Switchyard	Remove
69-kV Transmission Line	Remove
Diversion Tunnel Intake Structure	Remove
Diversion Tunnel Portals	Concrete Plug
Diversion Tunnel Control Gate	Remove

Source: Reclamation 2011b

Challenges Associated with the Removal of Iron Gate Dam


There are several potential challenges for the removal of Iron Gate Dam including (Reclamation 2011b):

- Potential for high flows in the Klamath River
- Large volume of embankment material to be excavated and high production rate required
- Modification of gated diversion tunnel for controlled releases during drawdown
- Improvements to the access bridge, which crosses the Klamath River, to handle construction equipment and haul loads

Figure 4.2-11: Partial removal would provide a free flowing river and allow full volitional fish passage. However, certain structures would be retained or retained and buried.

Figure 4.2-12: Potential locations for revegetation in Iron Gate Reservoir. Revegetation efforts would be focused as shown below.

Reservoir Management for Iron Gate Reservoir

The reservoir sediment at Iron Gate Reservoir is relatively thin and the only thicknesses over 5 feet were found in the Jenny Creek delta. Vegetation would need to be restored in a much narrower corridor than at either J.C. Boyle or Copco reservoirs (see Figure 4.2-12) (Reclamation 2011b).

Recreational Facilities Removal at Iron Gate Reservoir

For either full or partial facilities removal, the DRE would remove or modify a number of recreational facilities adjacent to the existing reservoir. Modification of these facilities is necessary as they are adjacent to the reservoir, which would no longer be present following dam removal (see Table 4.2-14).

Table 4.2-14: Existing Recreational Facilities Adjacent to Iron Gate Reservoir

Recreational Site	Estimated Use (2001/2002) ¹	Existing Facilities	Facilities After Dam Removal ²
Fall Creek	4,150	Day-use picnic area and boat launch	The site would remain as is.
Jenny Creek	3,700	Day-use picnic area and campground	The site would remain as is.
Wanaka Springs	4,150	Day-use area, campground, boat launch	All facilities would be removed.
Camp Creek	15,250	Day-use area, campground, boat launch	All facilities would be removed.
Juniper Point	4,700	Primitive campground and boat dock	All facilities would be removed.
Mirror Cove	11,140	Campground and boat launch	All facilities would be removed.
Overlook Point	1,900	Day-use area	All facilities would be removed.
Long Gulch	5,200	Picnic area and boat launch	All facilities would be removed.
Iron Gate Fish Hatchery Public Use Area	2,200	Day-use area and boat launch	The site would remain as is.

¹ In "recreational days".

² Sites where facilities would be removed would be regraded, seeded, and planted.

Mitigation Actions

Several mitigation actions have been identified to lessen the potential impacts of the dam removal process. As described for the removal of the other three dams and reservoirs, the following mitigation actions would be required:

- Relocate Fish
- Protect Culturally and Historically Significant Sites
- Install Fencing
- Deepen Groundwater wells
- Develop New or Modify Existing Recreational Facilities
- Install Bat Roosts to Replace Lost Habitat

In addition to these mitigation actions, the following additional measures would be applicable for the removal of Iron Gate Dam.

Freshwater Mussel Relocation

Freshwater mussels in the Klamath Hydroelectric Reach and in the lower Klamath River, downstream of Iron Gate Dam, are likely to be adversely affected by prolonged elevated SSCs and bedload movement during the later part of

reservoir drawdown and subsequent dam removal. Freshwater mussels cannot move to avoid these impacts, and some species are very long lived and may not reproduce successfully (or at all) each year. An action to mitigate this effect is to relocate freshwater mussels prior to drawdown. As described in Section 4.1, freshwater mussels could be relocated to tributary streams or upstream of the Klamath Hydroelectric Reach, and then moved back to their approximate location or to other suitable habitat in the river after dam removal has been completed.

Expansion of the 100-Year Floodplain

Hydrologic modeling of changes shows that removal of the Four Facilities could alter the 100-year floodplain inundation area downstream of Iron Gate Dam between RM 190 and 172 (from Iron Gate Dam to Humbug Creek). Figure 4.2-13 shows the RM locations where the flood crest elevation would change (Reclamation 2011e).

Modeling of flood flows downstream of Iron Gate Dam shows that the Four Facilities provide a slight attenuation of peak flood flows. Current estimates are that the discharge rate of the 100-year peak flood immediately downstream of Iron Gate would increase

Figure 4.2-13: The 100-year floodplain could change between RM 190 and 172 due to dam removal, with no discernable effects below RM 172.

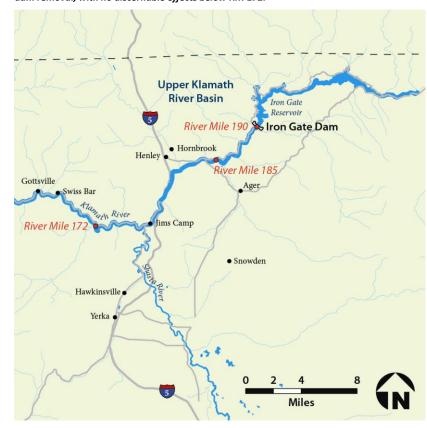
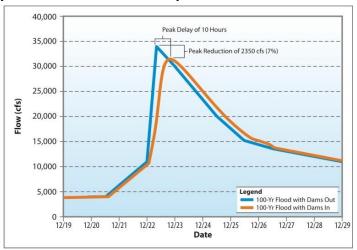



Figure 4.2-14: Hydrographs immediately below Iron Gate Dam for a 100-years flood event with and without removal of the Four Facilities.

Source: Reclamation 2011e

Figure 4.2-15: Close up of one or two structures potentially affected by the change in the 100-year Floodplain – comparison of dams in and dams out floodplain. (NOT A REGULATORY FLOOD PLAIN, this is just a comparison)

Legend

Modeled 100-year Floodplain

Without Dams

With Dams

0 100 200 Feet

by up to 7 percent following dam removal (Reclamation 2011e) and flood peaks would occur about 10 hours earlier. This increased discharge rate would result in approximately 1.5 feet higher flood elevations on average from Iron Gate (RM 190) to Willow Creek (RM 185). Figure 4.2-14 shows the difference in the hydrograph peak and timing during a 100-year flood event downstream of Iron Gate (RM 190) (Reclamation 2011d). Reclamation (2011d) conservatively assumed that this change in the peak flood discharge would be the same from RM 190 to 172 (Humbug Creek). The impact of dam removal on flood peak elevations would decrease with distance downstream of Iron Gate Dam, and Reclamation (2011e) estimated that there would be no significant effect on flood elevations downstream of RM 172 because there would be attenuation effects in the channel and the peak flows in the tributaries would not coincide with the peak flow from Iron Gate (Reclamation 2011e).

Changes in flood peak elevations and changes to the floodplain could affect properties and structures along the river downstream of Iron Gate Dam during a flood event. The Klamath Basin is subject to flooding and Federal Emergency Management Agency (FEMA) has developed flood insurance risk maps which Siskiyou County has recognized in regulations concerning development along the river.

While it is not possible at this time to identify the exact number of habitable structures that might be affected by a change in the floodplain, an estimate of the number of residences and structures potentially affected from Iron Gate Dam downstream to Humbug Creek was provided by the Reclamation (2011e). This estimate was based on photo interpretation and field visits. Structures in the Klamath Basin were categorized according to whether they are within the existing 100-year floodplain or would be in the 100-year floodplain after dam removal. The structures were further classified as either residences or garages (including buildings such as equipment sheds and horse barns). With the Four Facilities in place, approximately two dozen residences and two dozen garages are located in the existing 100-year floodplain between RM 190 and RM 172. Given the current plans for removal of the Four Facilities, less than six additional structures (including residences and garages) are projected to be within the modeled 100-year flood plain. Figure 4.2-15 illustrates the modeled change in the floodplain at representative structures at RMs 188 and 190.

By undertaking the following mitigation action, the DRE could minimize the effects from changes in the 100-year floodplain, flood crest elevations, and timing of flood peaks.

Flood Warning System

When a large flood event is predicted, the National Weather Service provides river stage forecasts for the Klamath River for the USGS gages at Seiad Valley, Orleans, and Klamath. The National Weather Service does not publish a forecast for river stage at the Iron Gate gage, but does work with PacifiCorp to issue flood warnings to Siskiyou County. The DRE would work with the National Weather Service, River Forecast Center to update its hydrologic model of the Klamath River to incorporate hydraulic changes following dam removal so that changes to the timing and magnitude of flood peaks would be included in the forecasts. As currently occurs, flood forecasts and flood warnings would be publicly posted by the River Forecast Center for use by federal, state, county, tribal, and local agencies, as well as the public, so timely decisions regarding evacuation or emergency response could be made.

Prior to dam removal, the DRE would inform the FEMA of a planned major hydraulic change to the Klamath River that could affect the 100-year flood plain. The DRE would ensure that recent hydrologic/hydraulic modeling, and updates to the land elevation mapping, would be provided to FEMA so that it can update its 100-year flood plain maps downstream of Iron Gate Dam (as needed), so flood risks (real-time and long-term) can be evaluated and responded to by agencies, the private sector, and the public.

Bridge and Culvert Relocation

The DRE would relocate or modify the Jenny Creek Bridge at Iron Gate Reservoir and culvert crossings along Copco Road, which would be affected by dam removal and reservoir drawdown. The culverts would be modified to prevent scour damage and headcutting. The abutments for Jenny Creek Bridge could be damaged by the new channel; therefore, the bridge would be relocated further upstream.

Downstream Water Intake Protection

During dam removal, the sediment built up within the reservoirs would be released downstream. Following dam removal, the DRE would investigate intake and pump sites for effects on water supply caused by the removal of the dams and the release of reservoir sediment. If necessary, the DRE would complete modifications to the intakes to reduce these effects. It has been assumed that the number of affected intakes would be 7 to 18 (Reclamation 2011b).

Estimated Costs

Estimated costs are presented for full facilities removal (see Table 4.2-15) and partial facilities removal (see Table 4.2-16). These tables present the most probable costs for the physical removal of Iron Gate Dam, the restoration of the reservoir, the removal of adjacent recreational facilities, and the mobilization of equipment and contingencies associated with the action. The cost estimate for partial facilities removal includes the life cycle cost associated with maintenance of facilities left behind.

Table 4.2-15: Estimated Costs for the Full Removal of Iron Gate Dam (2020 Dollars)⁶

	Forecast Range⁵		
	Minimum (Less than a 1% Chance the Actual Cost will be Below this Estimate)	Maximum (Less than a 1% Chance the Actual Cost will be Above this Estimate)	Most Probable ¹
Dam Facilities Removal			23,702,529
Reservoir Restoration			9,331,500
Recreational Facilities Removal			520,725
Mobilization and Contingencies ²			17,320,559
Escalation to January 2020			12,124,687
Subtotal (Field Costs)	51,100,000	97,600,000	63,000,000
Engineering (20%) ³			12,700,000
Mitigation (35%) ⁴			22,300,000
Total Construction Cost	78,100,000	169,000,000	98,000,000

¹ The most probable costs were used in the Economics analysis (See Section 4.4.1).

Mobilization and Contingencies includes the mobilization of construction equipment to the dam site, design contingencies and construction contingencies.

Engineering costs include design data, engineering designs, permitting, procurement, construction management, and closeout activities.

Mitigation includes environmental mitigation, monitoring, and cultural resources preservation.

The Minimum and Maximum ranges were determined using a Monte Carlo-based Simulation Process. See "Understanding the Estimated Costs" Side Bar.

An allowance for escalation for a period of 10 years, from the July 2010 price level to July 2020, was included in the cost estimates. The Most Probable cost estimates used an escalation rate of 3 percent per year, compounded annually, over 10 years. The 3 percent annual escalation rate used to measure the effects of inflation for future construction costs from July 2010 through July 2020 was based on Reclamation's Construction Cost Trends, OMB Circular No. A-94, other published historical data, and professional judgment.

Table 4.2-16: Estimated Costs for the Partial Removal of Iron Gate Dam (2020 Do	ollars) ⁷

	Forecas	t Range ⁵	
	Minimum (Less than a 1% Chance the Actual Cost will be Below this Estimate)	Maximum (Less than a 1% Chance the Actual Cost will be Above this Estimate)	Most Probable ¹
Dam Facilities Removal			21,629,277
Reservoir Restoration			9,331,500
Recreational Facilities Removal			520,725
Mobilization and Contingencies ²			16,158,423
Escalation to January 2020			11,360,075
Subtotal (Field Costs)	47,800,000	94,000,000	59,000,000
Engineering (20%) ³			11,700,000
Mitigation (45%) ⁴			26,300,000
Total Construction Cost	75,400,000	162,900,000	97,000,000
Total Life Cycle Cost ⁶	0	0	0

Source: Reclamation 2011b

- The most probable costs were used in the Economics analysis (See Section 4.4.1).
- Mobilization and Contingencies includes the mobilization of construction equipment to the dam site, design contingencies and construction contingencies.
- Engineering costs include design data, engineering designs, permitting, procurement, construction management, and closeout activities.
- ⁴ Mitigation includes environmental mitigation, monitoring, and cultural resources preservation.
- The Minimum and Maximum ranges were determined using a Monte Carlo-based Simulation Process. See "Understanding the Estimated Costs" Side Bar.
- Life cycle costs are the long-term cost of ownership over a defined period of time (50 years). See "Understanding the Estimated Costs" Side Bar.
- An allowance for escalation for a period of 10 years, from the July 2010 price level to July 2020, was included in the cost estimates. The Most Probable cost estimates used an escalation rate of 3 percent per year, compounded annually, over 10 years. The 3 percent annual escalation rate used to measure the effects of inflation for future construction costs from July 2010 through July 2020 was based on Reclamation's Construction Cost Trends, OMB Circular No. A-94, other published historical data, and professional judgment.

City of Yreka Water Supply Pipeline

Currently, the City of Yreka's water supply pipeline passes under the upstream end of the Iron Gate Reservoir and would become exposed to high-velocity river flows after dam removal. Under the KHSA, the DRE would be responsible for modifications to the pipeline to allow continued water supply service to the City of Yreka.

Reconstructing the 24-inch pipeline further underground would likely require digging in bedrock, which would be impractical and cost prohibitive. Therefore, for the purposes of estimating costs for replacing the pipeline river crossing, it is assumed the DRE would construct a new, elevated pipeline and steel pipeline bridge to support the pipe above the river. This replacement pipe crossing would be constructed prior to dam removal or reservoir drawdown. The prefabricated steel pipe bridge would be wide enough to accommodate the pipeline and walkway on the deck. The pipeline bridge would span approximately 300 feet, supported by concrete piers. The new pipeline would be connected to the existing buried pipeline at each end of the bridge, and would be aligned parallel to the existing pipeline. To avoid a disruption to the City's

water supply, the permissible outage period would be limited by the available storage tank capacity. If there is an Affirmative Secretarial Determination and dam removal proceeds, the City of Yreka and the DRE would consult on a final design, which may or may not include an elevated steel pipeline bridge.

In addition to pipeline modifications, the existing fish screens for the two water supply intakes on Fall Creek would need modifications to meet the current regulatory agency screen criteria for anadromous fish. For both intakes, a cylindrical tee screen would replace the existing flat panel fish screens. Table 4.2-17 provides the estimated costs for the necessary modifications.

Table 4.2-17: Estimated Costs for the Modification of the Yreka Pipeline (2020 Dollars)⁶

	Forecas	t Range⁵	
	Minimum (Less than a 1% Chance the Actual Cost will be Below this Estimate)	Maximum (Less than a 1% Chance the Actual Cost will be Above this Estimate)	Most Probable ¹
Dam A Intake Screen			208,860
Dam B Intake Screen			212,950
Pipeline River Crossing			1,344,100
Mobilization and Contingencies ²			1,196,500
Escalation to January 2020			637,590
Subtotal (Field Costs)	2,000,000	5,600,000	3,600,000
Engineering (20%) ³			700,000
Mitigation (35%) ⁴			1,300,000
Total Construction Cost	3,500,000	9,500,000	5,600,000

Source: Reclamation 2011b

¹ The most probable costs were used in the Economics analysis (See Section 4.4.1).

Mobilization and Contingencies includes the mobilization of construction equipment to the dam site, design contingencies and construction contingencies.

Engineering costs include design data, engineering designs, permitting, procurement, construction management, and closeout activities.

Mitigation includes environmental mitigation, monitoring, and cultural resources preservation.

The Minimum and Maximum ranges were determined using a Monte Carlo-based Simulation Process. See "Understanding the Estimated Costs" Side Bar.

An allowance for escalation for a period of 10 years, from the July 2010 price level to July 2020, was included in the cost estimates. The Most Probable cost estimates used an escalation rate of 3 percent per year, compounded annually, over 10 years. The 3 percent annual escalation rate used to measure the effects of inflation for future construction costs from July 2010 through July 2020 was based on Reclamation's Construction Cost Trends, OMB Circular No. A-94, other published historical data, and professional judgment.

4.2.2 Summary of Costs

Table 4.2-18 presents a summary of the total costs presented in this section for full facilities removal. Table 4.2-19 presents the summary of total costs for partial facilities removal.

Table 4.2-18: Summary of Costs for Full Removal of the Four Facilities (2020 dollars)⁶

(2020 dollars)			
	Forecas	st Range⁵	
	Minimum (Less than a 1% Chance the Actual Cost will be Below this Estimate)	Maximum (Less than a 1% Chance the Actual Cost will be Above this Estimate)	Most Probable ¹
Dam Facilities Removal			76,618,994
Reservoir Restoration			21,728,000
Recreational Facilities Removal			797,305
Yreka Water Supply Modifications			1,765,910
Mobilization and Contingencies ²			50,728,393
Escalation to January 2020			36,461,398
Subtotal (Field Costs)	157,600,000	301,200,000	188,100,000
Engineering (20%) ³			37,600,000
Mitigation (35%) ⁴			65,900,000
Total Construction Cost	238,000,000	493,100,000	291,600,000

Source: Reclamation 2011b

- ¹ The most probable costs were used in the Economics analysis (See Section 4.4.1).
- Mobilization and Contingencies includes the mobilization of construction equipment to the dam site, design contingencies and construction contingencies.
- ³ Engineering costs include design data, engineering designs, permitting, procurement, construction management, and closeout activities.
- ⁴ Mitigation includes environmental mitigation, monitoring, and cultural resources preservation.
- The Minimum and Maximum ranges were determined using a Monte Carlo-based Simulation Process. See "Understanding the Estimated Costs" Side Bar.
- An allowance for escalation for a period of 10 years, from the July 2010 price level to July 2020, was included in the cost estimates. The Most Probable cost estimates used an escalation rate of 3 percent per year, compounded annually, over 10 years. The 3 percent annual escalation rate used to measure the effects of inflation for future construction costs from July 2010 through July 2020 was based on Reclamation's Construction Cost Trends, OMB Circular No. A-94, other published historical data, and professional judgment.

What Happens if Costs Exceed the Cost Cap?

The upper end forecasted cost (less than the one percent probability) for full facilities removal is estimated to be \$493,100,000. This upper end cost exceeds the state cost cap of \$450,000,000. The KHSA has specific provisions to identify and mitigate a potential state cost cap exceedence through a meet and confer process of the KHSA parties prior to construction (KHSA Section 8.7.2). The meet and confer process would modify the final design or identify alternate funding prior to starting construction to reduce the possibility of exceeding the state cost cap. Development of the Definite Plan (as defined in KHSA Section 7.2.A) under an Affirmative Determination would more accurately assess the costs of facilities removal and the need for a meet and confer action prior to construction.

Table 4.2-19: Summary of Costs for Partial Removal of the Four Facilities (2020 dollars)⁷

	Forecas	t Range⁵	
	Minimum (Less than a 1% Chance the Actual Cost will be Below this Estimate)	Maximum (Less than a 1% Chance the Actual Cost will be Above this Estimate)	Most Probable ¹
Dam Facilities Removal			52,096,172
Reservoir Restoration			21,728,000
Recreational Facilities Removal			797,305
Yreka Water Supply Modifications			1,765,910
Mobilization and Contingencies ²			38,830,385
Escalation to January 2020			27,582,228
Subtotal (Field Costs)	116,600,000	230,200,000	142,800,000
Engineering (20%) ³			28,400,000
Mitigation (45%) ⁴			63,400,000
Total Construction Cost	185,100,000	403,600,000	234,600,000
Total Life Cycle Cost ⁶	9,000,000	26,800,000	12,350,000

Source: Reclamation 2011b

The most probable costs were used in the Economics analysis (See Section 4.4.1).

Mobilization and Contingencies includes the mobilization of construction equipment to the dam site, design contingencies and construction contingencies.

Engineering costs include design data, engineering designs, permitting, procurement, construction management, and closeout activities.

⁴ Mitigation includes environmental mitigation, monitoring, and cultural resources preservation.

⁵ The Minimum and Maximum ranges were determined using a Monte Carlo-based Simulation Process. See "Understanding the Estimated Costs" Side Bar.

⁶ Life cycle costs are the long-term cost of ownership over a defined period of time (50 years). See "Understanding the Estimated Costs" Side Bar.

An allowance for escalation for a period of 10 years, from the July 2010 price level to July 2020, was included in the cost estimates. The Most Probable cost estimates used an escalation rate of 3 percent per year, compounded annually, over 10 years. The 3 percent annual escalation rate used to measure the effects of inflation for future construction costs from July 2010 through July 2020 was based on Reclamation's Construction Cost Trends, OMB Circular No. A-94, other published historical data, and professional judgment.

4.3 RISKS AND UNCERTAINTIES OF DAM REMOVAL

Large dam removal involves inherent risks and uncertainties. Through the Detailed Plan and other studies of the TMT, the TMT has identified four primary risks that could result in changes to the expected effects of dam removal or anticipated construction activities. Other project uncertainties (e.g. presence of reservoir sediment contaminants) as described elsewhere in this report, have been successfully quantified or studied to an extent that the TMT removed them from the category of "risk". The Four remaining dam removal risks include:

- Risks to aquatic species and fisheries from extended downstream sediment transport;
- Risks of cost exceedence to a Federal DRE;
- Risks related to the potential for short-term flooding; and,
- Risks to cultural and historic resources in the project area.

The following sections describe and analyze these risks in more detail and identify measures or plans to reduce risk and uncertainty.

4.3.1 Affects to Aquatic Species and Fisheries from Extended Downstream Sediment Transport

As described in detail in Section 4.1.3, Short Term Effects on Fisheries from Dam Removal, dam removal and reservoir drawdown would result in short-term effects from increased suspended sediments concentrations (SSCs) and short-term decreases in dissolved oxygen in the mainstem of the Klamath River. Model results indicate that high SSCs would occur downstream of Iron Gate Dam for 2 to 3 months following reservoir drawdown. As shown in Figure 4.1-36, reservoir drawdown and associated levels of SSCs are likely to result in varying levels of decreased basin-wide production for salmonid species, including fall and spring-run Chinook, coho, and steelhead.

While the modeled effects of sediment release are previously described (see Section 4.1.3.1, *Sediment Transport and Short-term Water Quality Effects*), there is risk from an extended schedule for reservoir drawdown resulting from engineering and/or technical difficulties during dam removal.

In addition to the general effects of SSCs on salmonids and other aquatic species, the length of exposure time to high SSCs plays a critical role in the severity of the effects. The current plan for removing the Four Facilities calls for reservoir drawdown beginning January 1, 2020. Drawdown would occur in a controlled manner and the majority of the erodible sediments would be released in the early winter of 2020. This approach would limit the major fisheries impacts to the winter and spring months of 2020.

In the event that reservoir drawdown cannot be accomplished in this timeframe, continued high levels of SSCs in the mainstem of the Klamath River would

Sediment Effects on Salmonids

The most commonly observed effects of suspended sediments on salmonids include (Newcombe and Jensen 1996) the following:

- 1. Avoidance of turbid waters in homing adult anadromous salmonids
- 2. Avoidance or alarm reactions by juvenile salmonids
- 3. Displacement of juvenile salmonids
- 4. Reduced feeding and growth
- 5. Physiological stress and respiratory impairment
- 6. Damage to gills
- Reduced tolerance to disease and toxicants
- 8. Reduced survival
- 9. Direct mortality

produce similar impacts during the extended drawdown period and would negatively affect fish in consecutive years, potentially affecting multiple year classes. For example, if extending reservoir drawdown across two years resulted in a release of 50 percent of the total volume of erodible sediment during each year, predicted mortality would be 100 percent for spawning fall-run Chinook salmon in the mainstem Klamath River in both of the two years. One hundred percent mortality for spawning fall-run Chinook salmon in the mainstem Klamath River is approximately 8 percent of the total fall-run Chinook salmon in the Klamath River. Even if lower concentrations of sediment were released over multiple years at sublethal levels, the cumulative long-term effects on a population of successive cohorts are uncertain but are expected to be detrimental. Under existing conditions, salmon smolts outmigrating from Klamath River tributaries downstream of Iron Gate Dam have high mortality (35 to 70 percent) (Beeman et al. 2007, 2008), which, in conjunction with sublethal physiological stress and reduced growth from released sediments, could result in higher cumulative mortality. In addition, sublethal impacts associated with elevated SSCs, such as major physiological stress and reduced or no growth (Newcombe and Jensen 1996), results in smaller smolt size of outmigrants, which can reduce marine survival (Bilton et al. 1982, Bilton 1984).

Reductions in fish populations as a result of an extended draw-down period could result in corresponding reductions to recreational, commercial salmon, and tribal fisheries, as well as impacts on the regional economy and the cultural practices of basin tribes.

Due to the uncertainty regarding the length of time over which high SSCs would occur if a technical or engineering problem arose during dam removal, the exact effects on aquatic resources and on basin fisheries is not known. To reduce this uncertainty, the Definite Plan for dam removal (to be developed if there was an Affirmative Secretarial Determination) would place an emphasis on provisions, planning, and extensive preparation to ensure high SSCs associated with reservoir drawdown would not extend past March 15. Aquatic species relocation mitigation measures (described in Section 4.1.3.3) could be expanded or lengthened to remove fish from effects of high SSCs if they extend beyond March 15.

4.3.2 Cost Exceedence to a Federal DRE

The large and complex construction activities associated with dam removal have the potential to include unexpected changes or unforeseen events, which could result in project costs that are greater than originally estimated. Project challenges could impede the dam removal process or extend the project timeline, and could result in accrual of additional project costs. Project challenges could include high flows in the Klamath River during dam removal, severe or prolonged cold temperatures and icy conditions, presence of special status species, or the uncovering of culturally significant sites.

If an agency of the Federal government is the DRE, the KHSA states that the Federal Government has no responsibility to pay for any of the facilities' removal costs, even in the event of cost overruns (KHSA, Section 4.10). The KHSA states that if the DRE determines that costs are likely to exceed the state

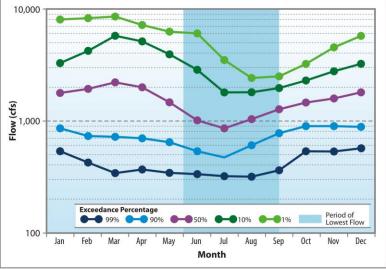
cost cap, the DRE shall suspend facilities removal (KHSA, Section 7.2.2). The DRE would resume removal at such time that the parties, through a defined "meet and confer process" (KHSA, Section 8.7.2), have modified the final design or identified alternate funding. Risk to a Federal DRE would occur if, during facilities removal, the DRE anticipated exceeding the state cost cap but was unable to stop a portion of facilities removal due to safety conditions. Removal of the Iron Gate Dam represents one potential safety condition, in that the dam embankment must be completely removed once the removal activity commences. If the cost cap was expected to be exceeded during the course of this action, the "meet and confer process" might not occur quickly enough to prevent a federal DRE from exposure to cost risk.

To reduce this potential risk, the DRE construction management team would utilize construction cost forecasting during facilities removal to determine early on in the project process whether a "meet and confer" action would be required. Further, construction activities could be prioritized with non-essential activities delayed while critical path, safety-related activities were completed prior to or during a "meet and confer" action by the KHSA parties.

4.3.3 Short-term Flooding

Dams are manmade structures and do exhibit some risks of catastrophic failure that could result in flooding downstream during facilities removal. According to the Association of State Dam Safety Officials (2011), dams can fail from overtopping or due to the structural failure of dam materials. It is important to note that the Four Facilities also have a small risk of failure if left in place. The discussion below does not suggest that the risk of catastrophic failure during dam removal would be greater or less than leaving the dams in place through 2061. Rather, this discussion is to disclose the remote possibility of catastrophic failure during dam removal and the approach to minimize those risks in the Detailed Plan for Dam Removal - Klamath River Dams (Reclamation 2011b).

There is a small risk that the earthen embankment structures at J.C. Boyle and Iron Gate dams could fail during reservoir drawdown and dam removal. The reservoir drawdown plans presented in Reclamation (2011b) are intended to minimize flood risks from catastrophic dam failure. The DRE would control reservoir drawdown to maintain flows that would not cause dam embankment overtopping. Additionally, drawing down the reservoirs would increase the available storage in J.C. Boyle, Copco 1, and Iron Gate reservoirs. Thus, if a high water year event occurred during drawdown, the DRE would be able to retain high flows during initial reservoir drawdown using the newly available storage capacity and continue drawdown after the flood risk ended.


There are two different time periods during reservoir drawdown and dam removal where short-term dam failure could result in flood risks:

 Initial reservoir drawdown. Flood risks stem from an overly rapid drawdown rate, resulting in embankment instability. Instability occurs as the soil strength of the embankment decreases from rapidly increasing pore pressure during drawdown, which creates failure or slumping of the exposed dam face. Reclamation (2011b) describes the controlled releases that would commence at the beginning of January 2020 in order to drain the reservoirs safely. The drawdown rate for J.C. Boyle Reservoir would be 1 foot per day and the drawdown rate for Iron Gate Reservoir would be 3 feet per day (subject to confirmation by a more detailed slope stability analysis conducted for the Definite Plan).

To address this risk, sufficient reservoir storage space would have to be maintained at all times between the excavated embankment surface and the reservoir to prevent embankment overtopping and potential failure. The amount of reservoir storage would be dictated by the amount of flood protection that is desired during the removal operation. The frequency of floods for the period of embankment excavation has been developed to help assess this risk.

2. Dam excavation. As the embankment is removed, reservoir storage is decreased. Flood risks during this period stem from the possibility of flows from a large flood event exceeding the available water bypass capacity and overtopping the lowered dam embankment, or at the point during excavation when the embankment is removed below the level of the spillway, thus making the spillway unavailable during this period of time.

Figure 4.3-1: The timing of J.C. Boyle and Iron Gate dam excavation and removal has been designed to occur when river flow is at its lowest point beginning in June, greatly reducing the probability of embankment overtopping.

Source: Reclamation 2011b

To address this risk, Reclamation (2011b) would not permit any excavation of the embankment section at Iron Gate Dam until June 1, 2020, and would require excavation to be complete by September 15, 2020.

The drawdown plans do not permit any excavation of the embankment section at J.C. Boyle Dam until after July 1, 2020 and require completion by September 30, 2020. The timing of dam excavation and removal has been designed to occur when river flow is at its lowest point (see Figure 4.3-1). During this period, outlet structures for the reservoirs would have sufficient capacity to bypass river flows. The 100 year frequency flood hydrograph for July was routed through the reservoirs and available outlets and spillways. At J.C. Boyle Dam, an upstream cofferdam would be provided for flood protection for flows through the excavated left abutment up to about 3,500 cfs. At Iron Gate Dam, a minimum flood release capacity of about 7,700 cfs would be maintained in June, 7,000 cfs would be maintained in July, and 3,000 cfs would be maintained in August and September, before final

breach of an upstream cofferdam. Each of these capacities would be able to accommodate a flood event having a minimum return period of 100 years for that time of year, based on historical streamflow records. The risk stems from the unlikely possibility of an unplanned high flow event—an event significantly greater than historical streamflow conditions—that overtops the embankment.

4.3.4 Cultural and Historic Resources

Ethnographic information and cultural resources research completed for the study area identified traditional cultural properties and other culturally sensitive sites along and near the Klamath River. These sites include villages at traditional salmon fishing sites, villages associated with secondary resource procurement areas, ceremonial sites, and burial sites (compare Daniels 2003; Deur 2004; Kreober and Barrett 1960; Waterman 1920). Based on the location and density of known sites, there is a high probability for the presence of submerged and other sites within the project boundaries.

Dam removal and reservoir drawdown could affect five sites reported to be submerged in the reservoirs, other sites that may be submerged in the reservoirs, and any human remains that may be associated with these sites. Culturally sensitive sites, artifacts or human remains could be exposed when the reservoirs are drained owing to (1) the river cutting a new channel, (2) decades of wind action along the shore of reservoirs that caused localized scour, or (3) slumping of banks as the reservoirs are drawn down. Once exposed, these sites would need to be documented and protected from vandalism or looting. Any Indian burial sites affected by reservoir removal would be subject to any state and local burial laws and possibly historic preservation laws.

While every precaution would be taken to avoid disruption of these resources, in the case that they are discovered during dam removal and other construction activities, they pose a risk. Encountering traditional cultural properties or other culturally sensitive resources could affect the timeline and cost of dam removal and associated activities.

SECTION 4 • Secretarial Determination Findings of Technical Studies 4.3 Risks and Uncertainties of Dam Removal

This page intentionally left blank.

4.4 ANALYSIS OF INFORMATION TO INFORM A DECISION ON WHETHER DAM REMOVAL AND KBRA ARE IN THE PUBLIC INTEREST

This section provides a summary of analyses, for multiple topic areas, to help inform a Secretarial Determination on whether dam removal and implementing of KBRA is in the public interest. This section does not draw an overarching conclusion regarding a public interest determination; that determination will be made by the Secretary of the Interior. This section analyses the potential effects of dam removal and implementation of KBRA on: national and regional economic development, Indian tribes, cultural resources, PacifiCorp's customers (electricity ratepayers), Wild and Scenic River values, recreation, real estate, National Wildlife Refuges, transport of chemicals downstream, algal toxins, greenhouse gases, and views of individuals and households from local, regional, and national perspectives.

4.4.1 Economic Analysis

The economic analysis conducted to evaluate the effects of dams out with KBRA (and partial facilities removal) relative to dams in without implementation of the KBRA followed the framework of the National Economic Development (NED) and Regional Economic Development (RED) accounts as defined in the *Economic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation Studies, March 10, 1983 (U.S. Water Resources Council 1983)*. The summary of the economic analysis presented in this section is described in more detail in the *Economics and Tribal Summary Technical Report* (Reclamation 2011c) and *Benefit-Cost and RED Technical Report* (Reclamation 2011a). Table 3-1 lists the economic analyses conducted for the Secretarial Determination. The analysis of tribal fisheries and related effects provided here is expanded more broadly in Section 4.4.2, *Tribal*, to include all tribal trust resources. In this section, as in other sections of the report, the terms "facilities removal" and "dam removal" refer to the dams out with KBRA scenario described at the beginning of Section 4.

The NED account evaluates the net economic benefits of the dams out scenario (which can also be assumed to include partial facilities removal). Net economic benefits are a measure of the extent to which society is better (or worse) off because of a given policy or action, and include measures of both market and non-market benefits. The federal objective is to contribute to national economic development consistent with protecting the nation's environment. A benefit cost analysis (BCA) is conducted, in which the benefits of a proposed project are compared to its costs. If benefits exceed costs (resulting in positive net benefits or a benefit-cost ratio greater than one), the project is considered economically justified.

The RED account evaluates changes in regional economic activity that could result from facilities removal and from implementation of the KBRA. An RED analysis is an analysis of regional economic impacts. A regional economic impacts analysis measures expenditures from a policy, program or event and analyzes how those dollars cycle through the economy. This can include

economic contribution analysis, which tracks the gross economic activity attributed to a policy or event in a regional economy; and, economic impact analysis, which measures net changes in new economic activity in a regional economy resulting from a policy or event. The RED analysis includes the direct impact on the primary affected industries as well as the secondary impacts, which are the changes in demand in industries supplying goods and services and changes in spending by households. The secondary impacts are often referred to as "multiplier effects." The RED's measurement of changes in economic activity and employment that occur locally or regionally when a project is implemented does not account for the extent that these changes are offset through transfers of this economic activity and employment to or from other regions of the nation.

The primary difference between the NED and RED is geography. The NED analysis evaluates net economic benefits from the perspective of the entire nation, while a RED analysis evaluates economic impacts on a local region specified for the analysis. The RED discussion below (Section 4.4.1.2) identifies the local regions used in the analysis.

4.4.1.1 National Economic Development

For the NED benefit-cost analysis, the benefits of dam removal are compared to the conditions that would occur if the dams were left in place. Thus, under a Dams In scenario, the analysis assumes annual licenses would continue to be issued to the dam owner, PacifiCorp, as has occurred since expiration of the FERC license in 2006. The period of analysis was 50 years, beginning in year 2012 with the Secretarial Determination, and continuing through 2061. Before comparisons were made between costs and benefits, they were corrected for inflation to the same dollar year. Furthermore, since the benefits and costs were estimated to occur at different times across the 2012-2061 period of analysis, they were discounted to the same year in order to have a consistent basis for comparison. Thus, all benefits and costs were estimated in 2012 dollars and discounted back to the year 2012 using the 2011 Federal water resources planning rate of 4.125 percent.¹

NED Benefit Estimation Methods

The economic valuation methods used to estimate the NED benefits of a Dams Out scenario included revealed preference (RP), stated preference (SP), and benefits transfer (BT). RP methods rely on individuals' observed behavior to infer values of environmental resources, while SP methods rely on individuals' statements about their intended behavior or expression of value under future environmental resource conditions. Absent the ability to collect primary data for the estimation of a site specific RP or SP valuation study, economic values can be estimated using BT. BT involves the transfer of data or analyses from existing studies from their original settings to other similar settings. RP methods are only able to capture NED benefits associated with use values under environmental resource conditions that have been experienced. By contrast, SP methods are able to capture NED benefits associated with both use and nonuse values and

¹ Change in Discount Rate for Water Resources Planning. 75 FR 82066 (29 December 2010).

can be used to value environmental resource conditions that have not been experienced. However, SP must rely on surveys to elicit the preferences of the public in a hypothetical context (the hypothetical context is a common concern with SP methods). The use of BT is limited by the degree to which existing studies conducted in other contexts reflect the economic values associated with the site being analyzed. In general, it can be particularly difficult to develop an appropriate estimate of nonuse values via BT. It was necessary to apply a combination of these methods in order to measure the broad scope of potential benefits and costs resulting from a Dams Out scenario. Further details about the particular economic valuation method applied for the various economic analyses conducted as part of the overall NED benefit-cost analysis can be found in the technical reports referenced in each NED benefit category sub-section.

Uncertainty

Uncertainty is almost always present when evaluating the net economic benefits of projects or activities that extend into the future. Some of the economic values estimated in the NED analysis are based on hydrologic modeling that incorporates best available data and assumptions and conclusions by expert panels. However, unpredictable conditions, such as weather, prices, and population growth, could affect the direction and magnitude of modeling results used to evaluate some of the NED benefits. Major sources of uncertainty in the NED analysis include the following:

- Hydrology: Future hydrology would be expected to affect agricultural activities, hydropower production, fisheries, and recreation. In general, additional surface water supplies would increase the benefits to most affected resources. However, the timing of the additional supplies would also be a factor.
- Crop prices and agricultural production input costs: Crop prices and input costs would affect the agricultural benefits in the Klamath Basin. In general, when input costs increase, all else being equal, agricultural benefits would decrease. The effects of crop price changes would depend on the direction and magnitude of the changes. Higher crop prices, all else equal, would be expected to increase net agricultural revenues.
- Hydropower: The hydropower analysis is sensitive to hydrology, future electricity prices and the timing of future capital investments necessary to replace aging equipment at the hydropower plants. New equipment is expected to result in some improvements in efficiency. Lengthy periods of greater than average hydrologic conditions will result in higher foregone hydropower benefits. The higher future electricity prices are, the larger the foregone hydropower values would be. The sooner in time the aging hydropower equipment at these four plants is replaced, the earlier capital costs are incurred, the gains in hydropower generation efficiency are realized and the larger the foregone hydropower benefits.
- **Fisheries:** Natural variability in biological and environmental parameters and uncertainty regarding future harvest management policies would affect fishery benefits. The magnitude of these changes is difficult to predict.

- Capital and mitigation costs: Costs are subject to changes in supply and prices of labor, materials, and equipment. Shifts in the timing of when costs are incurred would also change the present value of the costs. All else equal, shifting capital costs closer to the present would increase the present value of these costs; shifting costs further into the future would decrease present values.
- KBRA: The timing, nature, extent, and success of the KBRA measures
 implemented could affect both costs and benefits, including use and nonuse
 values. Shifting KBRA costs closer to the present would increase the present
 value of these costs; shifting costs further into the future would decrease
 present values.
- Recreation: Changes in population and visitation projections could affect recreation. For instance, flow conditions under a Dams Out scenario are expected to allow some continuation of whitewater boating trips but the extent of such activity is uncertain. Future effects of blue-green algae at Copco 1 and Iron Gate reservoirs on recreational visitation under a Dams In scenario are uncertain.
- Nonuse value: The soundness of nonuse value surveys is highly dependent on how well the survey is designed to address potential concerns such as hypothetical bias. The accuracy of nonuse value estimates cannot be verified directly; modeling exercises and statistical tests are used to evaluate the consistency and validity of the values elicited in such surveys. Survey results are contingent on the specific scenarios or attributes being valued, which are themselves subject to uncertainty.

Uncertainty regarding outcomes is typically addressed by calculating expected values in a manner that incorporates variability. Uncertainty can also be recognized explicitly by using sensitivity analysis to measure how the results are affected by a change in an input or assumption, holding all else constant. In general, the individual economic analyses conducted as part of the overall benefit-cost analysis address uncertainty in this manner. Further details can be found in the individual technical reports referenced in each sub-section discussing the categories of benefits analyzed.

Benefits Analyses

A range of potentially affected benefits associated with dam removal and KBRA activities was identified for this study. Benefits were analyzed for the following categories:

- Commercial fishing
- In-river sport fishing
- Ocean sport fishing
- Irrigated agriculture
- Refuge recreation

- Nonuse values
- Tribal effects
- Hydropower
- Reservoir recreation
- Whitewater recreation

The evaluation of hydropower, reservoir recreation, and whitewater recreation resulted in foregone benefits, implying that benefits for those categories in the Dams Out scenario are less than the Dams In scenario. Although tribal effects are sometimes included in the "Other Social Effects" account (as defined in the Principles and Guidelines framework), they are included in this report in the Benefits Analysis section to facilitate comparison with other benefits and costs.

Commercial Fishing

The information presented in this section is based on the Economics and Tribal Summary Report (Reclamation 2011c) and the *Commercial Fishing Economics Technical Report* (NOAA Fisheries Service 2011a). The particular salmon stocks influenced by the presence of or removal of the Four Facilities are the Southern Oregon Northern California Coastal (SONCC) coho salmon Evolutionarily Significant Unit (ESU) and Klamath River fall- and spring-run Chinook salmon. Reclamation (2011c) and NOAA Fisheries (2011a) discuss in detail the methods and models used to evaluate commercial fishing benefits. All economic effects described below for the troll fishery under a Dams Out scenario would similarly apply to partial facilities removal.

SONCC Coho Salmon

The SONCC coho ESU includes 28 coho populations ranging from the Elk and Rogue Rivers in southern Oregon to the Eel River in northern California, and includes the coho populations in the Klamath Basin (Williams et al. 2008). The SONCC coho ESU is listed as "threatened" under the ESA. Coho salmon retention has been prohibited in the troll fishery south of Cape Falcon since 1993 to meet consultation standards for SONCC coho and three other coho ESUs listed under the ESA. This prohibition is expected to continue into the future under a Dams In scenario.

According to the Coho/Steelhead Expert Panel, a Dams Out scenario is expected to improve habitat conditions that are relevant to the viability of Klamath River coho populations and advance recovery of the SONCC coho ESU (Dunne et al. 2011). However, because the Dams Out scenario does not include coho restoration outside the Klamath Basin, this option alone will not create conditions that would warrant de-listing of this ESU throughout its range. Thus, under a Dams Out scenario, coho retention would likely continue to be prohibited in the California and Oregon troll fisheries south of Cape Falcon.

Klamath Chinook Salmon

Klamath Chinook salmon consist of fall and spring-run populations, neither of which is listed under the ESA. Although fall-run Chinook salmon (which includes a sizeable hatchery component) experiences wide temporal fluctuations in abundance, it consistently accounts for a much larger share of ocean troll harvest than spring-run Chinook salmon, which is at low levels of abundance (though not ESA-listed). This stock composition is likely to persist in the future if the dams are left in place. A modest harvestable surplus of spring Chinook may become available if the Four Facilities are removed (Goodman et al. 2011, Hamilton et al. 2011, Lindley and Davis 2011). However, assuming that the current troll season structure is retained (due to ESA consultation standards for

other stocks and other constraints), troll harvest of spring Chinook may be limited, as a large portion of the spring run will have returned to the river by the time the troll season opens.

Due to the biological effects of habitat restoration and expansion (and accompanying fishery regulations), troll harvest of combined fall- and spring-run Klamath Chinook salmon is expected to increase by an annual average 43 percent during 2012-2061 under a Dams Out scenario (Hendrix 2011). Table 4.4.1-1 shows average annual net revenue associated with total Chinook salmon harvest (all stocks) attributable to Klamath Chinook salmon availability in the seven affected ocean management areas (NOAA Fisheries Service 2011a). The average annual increase in net revenue (for all areas combined) under Dams Out relative to a Dams In scenario is \$7.296 million. Over the period of analysis, this is equivalent to \$134.5 million in discounted present value terms.

Table 4.4.1-1: Annual and Total Discounted Net Economic Value of the Chinook Troll Fishery (all stocks) Under Dams Out with KBRA and Dams In, by Management Area (Million \$, 2012 dollars)

Management Area	Dams In	Dam Removal	Difference between Dam Removal and Dams In
Northern OR	0.112	0.160	0.048
Central OR	5.567	7.948	2.381
KMZ -OR	0.217	0.310	0.093
KMZ-CA	0.267	0.381	0.114
Fort Bragg	3.417	4.879	1.462
San Francisco	7.419	10.593	3.174
Monterey	0.058	0.083	0.025
Total Annual Value	17.057	24.353	7.296
Total Discounted Value (2012-2061)	375.3		134.5

Note:

KMZ = Klamath Management Zone

Annual harvest is projected to be higher in 70 percent of years if the Four Facilities are removed than if they remain in place. In 2006, unusually low Klamath River fall Chinook abundance triggered major regulatory restrictions and adverse economic conditions for all Chinook fisheries (including the troll fishery). Such population conditions are projected to occur in 66 percent fewer years under a Dams Out scenario.

In-River Sport Fishing

The information in this section is taken from Reclamation 2011a and the *In-River Sport Fishing Economics Technical Report* (NOAA Fisheries Service 2011c). In-river recreational fisheries potentially affected under a Dams Out scenario include existing fisheries for salmon, steelhead and redband trout, and the recreational sucker fishery, which has been closed since 1987. The particular salmon stocks influenced by the Dams In and Dams Out scenarios are the SONCC coho salmon ESU and Klamath River fall- and spring-run Chinook salmon. All economic effects described below for the in-river recreational fisheries under full removal of the Four Facilities would similarly apply to partial removal of the Four Facilities.

Salmon Fishery

As with the commercial fishery, the expected impacts of a Dams Out scenario on the in-river fishery are expected to differ between the SONCC coho ESU and the Klamath Basin Chinook.

As explained in the Commercial Fishing section above, because the SONCC coho ESU is listed as "threatened" under the ESA, coho retention is also prohibited in the Klamath River recreational fishery. Since dam removal will not lead to SONCC coho restoration throughout its range, these prohibitions are expected to continue in the future under a Dams Out or Dams In scenario.

Unlike the SONCC coho ESU, in-river recreational fishing for Chinook salmon is allowed. If the dams remain, the annual average net economic value of the in-river recreational Chinook salmon fishery is estimated to be \$1.648 million. The discounted present value of the in-river sport fishery during 2012-2061 under a Dams In scenario equates to \$36.4 million.

Due to the biological effects of habitat restoration and expansion (and accompanying fishery regulations), in-river recreational harvest of Klamath Chinook salmon is expected to increase by an annual average of 8 percent during 2012-2061 with dam removal (Hendrix 2011). The resulting average annual net economic value would be \$1.774 million, an increase of \$126,000 per year. The increase in the discounted present value of the in-river sport fishery during 2012-2061 associated with a Dams Out scenario equates to \$1.75 million.

Annual harvest is projected to be higher in 70 percent of years under a Dams Out scenario compared to a Dams In scenario. As noted above, population conditions leading to major regulatory restrictions and adverse economic conditions for all Chinook fisheries (including the in-river recreational fishery) are projected to occur in 66 percent fewer years under a Dams Out scenario.

A modest harvestable surplus of spring Chinook may become available if the dams are removed (Goodman et al. 2011, Hamilton et al. 2011, Lindley and Davis 2011). Such a surplus is more likely to be advantageous to in-river fisheries than it is to ocean troll and recreational fisheries, because the season structure of ocean fisheries is constrained by ESA consultation standards for other stocks and other factors; thus, a large portion of spring-run Chinook will have returned to the river by the respective opening dates of the ocean fisheries. To the extent that spring-run Chinook salmon numbers become sufficient to allow in-river recreational harvest, economic benefits can be expected for that fishery, as spring-run Chinook salmon are highly desirable for their fat content and have the potential to temporally expand recreational harvest opportunities beyond the current fall-run Chinook salmon season.

Steelhead Fishery

The Coho/Steelhead Expert Panel considered it unlikely that the steelhead's status would change if the dams are left in place (Dunne et al. 2011). Thus, the steelhead fishery with the dams remaining in place is characterized in terms of existing conditions. The total annual economic value of the fishery is estimated to be \$1.426 million – based on a net value per angler day derived from various

steelhead valuation studies in the economics literature. The discounted present value of the fishery with the dams remaining in place equates to \$31.2 million.

An important component of the Klamath River steelhead fishery is the half-pounder fishery. Half pounders are immature steelhead (less than 16 inches) that migrate to the river while immature, then return to the ocean before again migrating to the river as adults. Half pounders are unique to northern California and southern Oregon. Data on the half-pounder fishery are sparse; California's requirement that steelhead anglers submit a "report card" to the State documenting their steelhead catch applies only to steelhead that are larger than 16 inches. This analysis does not cover the half-pounder fishery and, thus, underestimates steelhead fishing activity and value with the dams remaining in place.

Over the longer term, the panel concluded that removal of the Four Facilities would likely lead to increases in the abundance and spatial distribution of steelhead, including successful colonization of the upper Klamath Basin (Dunne et al. 2011). These conclusions are contingent on conditions such as effective implementation of the KBRA and successful fish passage through Keno Reservoir and Upper Klamath Lake. The Biological sub-team noted that access to upper Klamath Basin habitat provided by removal of the Four Facilities would be more favorable to steelhead than other anadromous species, due to steelhead's ability to navigate steep gradients and spawn in small streams and their resistance to the disease *C. Shasta* (Hamilton et al. 2011).

It is not possible to make quantitative economic inferences for the steelhead fishery, as the panel and sub-team were able to draw only qualitative conclusions regarding effects of a Dams Out scenario on the steelhead population. However, removal of the Four Facilities appears to provide notable potential to enhance the net economic value of the steelhead fishery from its current discounted present value of \$31.2 million with the dams remaining in place.

Redband Trout Fishery

The Resident Fish Expert Panel expected the distribution and abundance of redband/rainbow trout to remain stable with the dams remaining in place (Buchanan et al. 2011). Thus, current fishery conditions provide a reasonable representation of fishing activity if the dams remain in place.

The redband trout fishery is a renowned trophy fishery. The tributary streams upstream of Upper Klamath Lake "offer some of the best fly fishing in the United States;" however, due to the lack of upstream fishery data from Oregon or any other source, quantitative estimates of effort and harvest for that area are not available. The fishery downstream of Keno Dam is largely limited to the Keno Reach (Keno Dam to J.C. Boyle Reservoir), where redband trout also reach trophy size. Fishing activity downstream of J.C. Boyle Dam is likely modest, as hydropower operations make fishing conditions (fishable flows) in that area during daylight hours unpredictable.

The Resident Fish Expert Panel predicted marked improvement in the redband trout fishery under a Dams Out scenario. The panel predicted an expansion in

the distribution and abundance of large-sized trout in upper Klamath River and the lower Williamson and Wood rivers. The qualitative nature of their evaluation and the lack of data on fishing activity in the tributaries make it infeasible to quantify the economic effects of such improvement. The panel concluded that short-term adverse impacts from removal of the Four Facilities would be outweighed by increases in the size and abundance of resident trout in the 43 miles between J.C. Boyle Reservoir and Iron Gate Dam and a potential seven-fold increase in the fishery. Lack of data on fishing effort downstream of Keno Dam makes it infeasible to draw quantitative inferences for that area (Buchanan et al. 2011). Even given the lack of quantitative information, it is considered likely that removal of the Four Facilities would represent a major change from current conditions and a considerable increase in the value of the redband trout fishery.

Sucker Fishery

Lost River and shortnose suckers are listed as "endangered" under the ESA. The recreational sucker fishery has been closed since 1987 and the prospects of a future fishery are unlikely under a Dams In scenario. As noted by the Resident Fish Expert Panel, "With declining populations under the current conditions, there are no opportunities for tribal or recreational harvest" (Buchanan et al. 2011).

The prospects for restoration of the recreational sucker fishery appear quite limited under a Dam Removal scenario. As noted by the Resident Fish Expert Panel, "Harvest other than ceremonial tribal harvest should only occur after a sustained population growth can be shown over a period of decades" (Buchanan et al. 2011). Given the susceptibility of long-lived species like suckers to overharvest, if and when the suckers are de-listed, population monitoring will be needed for an extended period thereafter before considering whether to re-open the recreational fishery.

Ocean Sport Fishing

This section is from *Economics and Tribal Summary Technical Report* (Reclamation 2011c) and the *Ocean Sport Fishing Economics Technical Report* (NOAA Fisheries Service 2011f). As for commercial fishing, benefits of ocean sport fishing are evaluated separately for each of the seven management areas. All economic effects described below for the ocean recreational fishery under full removal of the Four Facilities would similarly apply to partial removal of the Four Facilities.

Coho salmon retention has been prohibited in California's recreational fishery since 1996 to meet the consultation standard for ESA-listed Central California Coast coho salmon (listed in 1996); this prohibition also meets the consultation standard for SONCC coho salmon (listed in 1997). In 1998, a mark-selective recreational coho salmon fishery was established in Oregon with a marked coho salmon quota and season limits to ensure that the fishery does not exceed maximum allowable exploitation rates for three ESA-listed coho salmon ESUs, including SONCC coho salmon. These California and Oregon regulations are expected to continue in the future if the dams remain.

The SONCC coho ESU includes coho populations both inside and outside the Klamath Basin (Williams et al. 2008). Dam Removal and implementation of the KBRA is expected to improve habitat conditions that are relevant to the viability of Klamath River coho populations and advance recovery of the SONCC coho ESU (Dunne et al. 2011). However, since a Dams Out Scenario does not include coho restoration outside the Klamath Basin, this option alone will not create conditions that would warrant de-listing of the SONCC coho ESU throughout its range. Thus, the prohibition on coho retention in California and the mark-selective coho regulations in Oregon would likely continue under a Dams Out scenario.

Due to the biological effects of habitat restoration and expansion (and accompanying fishery regulations), the recreational harvest of Klamath Chinook salmon is expected to increase by an average annual 43 percent during 2012-2061 under a Dams Out scenario. Table 4.4.1-2 summarizes annual net economic value associated with total Chinook salmon harvest (all stocks) attributable to Klamath Chinook salmon availability with Dams Out and Dams In. The average annual increase in net economic value (for all areas combined) for Dams Out relative to Dams In is \$2.865 million. Over the period of analysis, this is equivalent to \$52.9 million in discounted present value terms.

Table 4.4.1-2: Annual and Total Discounted Net Economic Value of the Ocean Recreational Chinook Fishery (all stocks) Under Dams Out with KBRA and Dams In, by Management Area (2012 dollars, million \$)

Management Area	Dams In	Dam Removal	Difference between Dam Removal and Dams In
Northern OR	0.091	0.130	0.039
Central OR	0.150	0.215	0.064
KMZ-OR	2.236	3.192	0.956
KMZ-CA	3.845	5.490	1.645
Fort Bragg	0.247	0.353	0.106
San Francisco	0.094	0.134	0.040
Monterey	0.034	0.049	0.015
Total Annual Value	6.697	9.562	2.865
Total Discounted Value (2012-2061)	147.4	200.2	52.8

Annual harvest is projected to be higher in 70 percent of years if the facilities are removed than if they remain in place. As noted above, population conditions leading to major regulatory restrictions and adverse economic conditions for all Chinook fisheries (including the ocean recreational fishery) are projected to occur in 66 percent fewer years under a Dams Out scenario.

Fall-run Chinook salmon (consisting largely of hatchery fish) is currently a much larger component of ocean recreational harvest than spring-run Chinook salmon, which is at low levels of abundance. This stock composition is likely to persist in the future if the dams remain. A modest harvestable surplus of spring Chinook may become available with Dam Removal and Implementation of the KBRA. However, assuming that the current ocean recreational season structure is retained (due to ESA consultation standards for other stocks and other factors), ocean recreational harvest of spring Chinook may be limited, as a large

portion of the spring run will have returned to the river by the time the season opens.

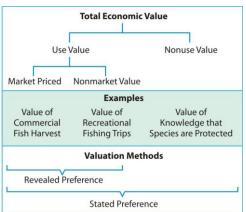
Irrigated Agriculture

This section is from Reclamation (2011c) and the *Irrigated Agriculture Economics Technical Report* (Reclamation 2011g). These reports discuss in detail methods used to evaluate economic benefits and results. Table 4.4.1-3 shows the economic benefits relating to agriculture under Dams In and Dams Out and implementation of the KBRA. Agricultural benefits under the Dams Out scenario relate to elements of the KBRA, primarily Reclamation Klamath Project hydrology. The KBRA provides larger amounts of water for irrigated agriculture in drought years, relative to what is anticipated under the baseline. The agricultural benefits are directly related to reducing the economic losses that might occur absent the water sharing agreement in the KBRA. Economic benefits related to agriculture for partial removal of the Four Facilities would have the same economic benefits as full removal of the Four Facilities.

Table 4.4.1-3: Total Discounted Economic Value of Irrigated Agriculture Under Dams Out with KBRA and Dams In (2012 dollars, million \$)

	Dams In	Dam Removal	Difference between Dam Removal and Dams In
Total Discounted Value (2012-2061)	1,578.9	1,608.8	29.89

Source: Reclamation 2011c


Refuge Recreation

This section is from *Economics and Tribal Summary Technical Report* (Reclamation 2011c) and the *Refuge Visitation Economics Technical Report* (USFWS 2011). These reports discuss methods to evaluate effects and results in detail.

It is assumed that with the Dams In without the KBRA scenario, during the hunting season, an estimated 7,740 hunting trips are taken in response to the relative abundance of birds. The annual economic benefit associated with waterfowl hunting activities during a normal water year is estimated to range between \$351,720 and \$485,708. The midpoint of this range, or \$418,714, is used as the annual waterfowl hunting benefit under the Dams In scenario.

With the Dams Out with the KBRA scenario, the economic benefit associated with waterfowl hunting activities during a normal water year is estimated to range between \$516,867 and \$713,769 annually. As compared to the Dams In scenario, this represents a difference of \$165,147 to \$228,061 per year in additional economic benefit associated with waterfowl hunting. The midpoint of this range, or \$196,604, was used as the change in annual waterfowl hunting benefit within the overall benefit-cost analysis. Table 4.4.1-4 summarizes the discounted present value of the annual waterfowl hunting benefits from 2012 to 2061 with the Dams In, Dams Out and the difference between the two. The

Figure 4.4.1-1: Total Economic Value: Typology and Valuation Methods

Source: Adapted from Bateman et al. (2003).

change in economic benefits for refuge recreation under partial removal of the Four Facilities would be the same as full removal of the Four Facilities.

Table 4.4.1-4: Total Discounted Net Economic Value of Refuge Recreation Under Dams Out with KBRA and Dams In (2012 dollars, million \$)

	Dams In	Dam Removal	Difference between Dam Removal and Dams In
Total Discounted	9.2	13.5	4.3
Value (2012-2061)			

Source: Reclamation 2011c

Nonuse Values

The total economic value that an individual derives from a natural resource, such as a river basin, can be conceptually divided into use and nonuse values. Therefore, in the context of economic analysis, the value of an environmental service or resource is equal to the sum of use and nonuse values. Use values can arise from the exchange and consumption of market goods and services, such as commercially harvested fish. Important use values can also be derived from nonmarket activities, such as recreational use activities. Economic methods used to estimate use values include revealed preference (RP) methods, whereby use values are inferred from individuals' observed behavior, and stated preference (SP) methods, whereby use values are inferred from individuals' statements regarding their intended behavior under future conditions. Up to this point, the discussion of the NED benefit-cost analysis has focused on use values.

Nonuse values capture individuals' preferences for public goods or resources that are not derived directly from their use. As such, nonuse values can accrue to members of the public who value Klamath Basin improvements regardless of whether they ever consume Klamath River fish, visit the Klamath Basin, or otherwise use the resources from the Basin. Factors that give rise to nonuse values could include the following:

- Desire to preserve the functioning of specific ecosystems
- Desire to preserve the natural ecosystem to maintain the option for future use
- Feeling of environmental responsibility or altruism towards plants and animals

Evidence of nonuse values can be found in the trade-offs people make to protect or enhance environmental resources that they do not use. In some cases, they are motivated to provide opportunities for their children or more generally for others in society to use or enjoy such resources in the future. They may feel such resources contribute to their conception of the nation's natural heritage. What is important from the perspective of economic analysis is that they are willing to give up resources (money) to achieve the environmental improvements.

To fully capture the benefits that would accrue to society from restoration of the Klamath Basin resulting from removal of the Four Facilities, an estimate of nonuse values is needed. Because nonuse values, by definition, cannot be revealed from observed behavior, estimation of nonuse values requires the use of stated preference (SP) methods. Although there has been debate about SP methods, particularly as applied to estimation of nonuse values, SP methods have been used in various settings to help inform decision making.²

SP methods rely on responses to carefully designed and worded surveys to elicit the preferences of the public. In keeping with this protocol, the DOI, in conjunction with Research Triangle Institute (RTI) International, designed, pre-tested, pilot tested, and implemented a stated preference (SP) survey in order to account for the nonuse benefits that would accrue to society from fish habitat and river ecosystem improvements in the Klamath Basin. The survey was designed to measure the total economic value (i.e., nonuse values as well as use values) that households in the United States place on the changes in Klamath Basin conditions expected to occur under a Dams Out and implementation of the KBRA scenario. Details of the survey and results are contained in RTI International, December 2011, Klamath River Basin Restoration Nonuse Value Survey Final Report (RTI International 2011).

This survey was the first to date to use SP methods to estimate the total economic value associated with dam removal and other restoration measures on the Klamath River. The design of the survey instrument was done iteratively and subject to several formal and informal peer reviews prior to implementation. Best practices in survey design methods were followed and input from a diverse set of experts and interested parties was solicited. The beginning of Section 4.4.1.1 discussed the various methods used to estimate NED benefits and some of their limitations. With regard to the Klamath SP survey, a number of steps were taken to mitigate hypothetical bias, a common concern with SP methods.³

Overall, the purpose of implementing the SP survey was to provide an estimate of total economic value, which includes nonuse and use values, by determining how much households would be willing to pay (WTP) for specific scenarios for ecosystem restoration within the Klamath Basin. To accomplish this, a conjoint or discrete choice experiment format was chosen for the SP survey. The conjoint format allows one to estimate the value of alternative plans, where the plans are constructed from a set of attributes. Based on pretesting and expert review, three "fixed" attributes and four "varying" attributes were selected to describe Action and No Action plans for the SP choice questions. The levels of the fixed

Examples include the National Park Service's (NPS) evaluation of snowmobile regulations for the Greater Yellowstone Area, the Bureau of Reclamation's and NPS's assessment of the effects of the re-regulation of Glen Canyon dam on resources of the Grand Canyon, and natural resource damage assessments conducted for oil spills or hazardous substance releases.

Efforts made to mitigate possible sources of hypothetical bias included using a binary choice referendum (choice-based format); a short script warning respondents to be aware of hypothetical bias; reminders about the respondents' budget constraints; and text emphasizing the importance of the respondents' answers to policy makers. In addition, after each SP question, respondents were asked how certain they were of their response.

attributes were different for the Action and No Action plans, but they did not vary across the Action plans presented to respondents. The fixed attributes comprise the three main elements of the KHSA and KBRA: dam removal, the water-sharing agreement, and fish restoration projects. The purpose of these three attributes is to remind respondents to consider all the elements of the agreements when making their choice.

The four varying attributes of the survey pertained to changes in the abundance of wild Chinook salmon and steelhead trout, changes in the extinction risk for coho salmon, changes in the extinction risk for the shortnose and Lost River suckers, and the cost to the household per year for a 20-year period starting in 2012. The levels of the varying fish related attributes were selected to encompass the range of most likely outcomes from implementation of the KHSA and KBRA, and were based on expert judgment, existing empirical studies, and the state of the science at the time the survey was developed.

The survey was a nationwide survey, and was mailed to a random sample of U.S. households. To capture potential differences among respondents based on proximity to the Klamath River, the overall target population sampled was divided into three geographic strata: the 12-county area around the Klamath River⁴, the rest of Oregon and California, and the rest of the United States. Table 4.4.1-5 below shows the survey response rate for each stratum. The Klamath survey response rates were slightly higher than what was projected at the survey development and approval stages. As such, more than a sufficient number of responses were received to allow for statistically valid estimates to be computed.

Table 4.4.1-5: Klamath Survey Response Rates

Strata	Total Number of Surveys Mailed (less undeliverables)	Number of Paper Survey Responses	Number of Web Survey Responses	Total Responses	Response Rate ¹
12-County Klamath area ²	2,496	985	42	1,027	41.1%
Rest of CA & OR (Excluding the 12-County Klamath Area)	3,932	1,105	76	1,181	30.0%
Rest of the U.S. (Excluding CA & OR)	3,849	1,100	64	1,164	30.2%
Total	10,277	3,190	182	3,372	32.8%

Response rate = total surveys completed/(total surveys mailed – undeliverable surveys).

In addition to collecting responses to questions designed to measure economic values, the survey also included questions related to demographics, attitudes, and opinions. The sample was designed to be representative of households, not individuals. Therefore, similarities or differences between the individual-level characteristics reported by survey respondents relative to other sources such as

² 12-County Klamath Area is defined as: Lake, Klamath, Douglas Jackson, and Josephine Counties in Southern Oregon and Modoc, Siskiyou, Del Norte, Humboldt, Trinity, Shasta, and Tehama Counties in Northern California.

⁴ The 12-county area around the Klamath River is defined as Lake, Klamath, Douglas, Jackson, and Josephine Counties in southern Oregon and Modoc, Siskiyou, Del Norte, Humboldt, Trinity, Shasta, and Tehama Counties in northern California.

the Census do not imply that the sample is either representative or not representative at the household level.

The 12-county Klamath area sample had the highest percentage of households in the lower income brackets; 56.4 percent of Klamath area respondents reported household incomes below \$50,000 per year compared to 40.4 percent for the rest of Oregon and California sample and 47.5 percent for the rest of the United States sample. The relative differences in reported household income levels between the three strata are consistent with census data for these areas.

The rate of home ownership reported by respondents was highest for the rest of the United States sample (roughly 75 percent), but closely followed by the 12-county Klamath area sample at about 74 percent. Homeownership in the rest of Oregon and California sample was approximately 66 percent. Homeownership rates in the overall survey sample are relatively high (74 percent) compared to U.S. statistics (67 percent in 2010).

Results

The survey contained a number of questions about the use of Klamath Basin resources, the economy, the environment, and the respondent's attitudes and opinions about restoration of the Klamath Basin. As stated previously, the sample was designed to be representative of households, not individuals. Therefore, similarities or differences between the individual-level characteristics reported by survey respondents relative to other sources such as the Census do not imply that the sample is either representative or not representative at the household level.

Respondents were asked how they use their local rivers. More than 50 percent of respondents in each of the regions indicated they used local rivers for at least one form of recreation, while less than 15 percent reported no use of local rivers. Table 4.4.1-6 contains the distribution of responses regarding river use.

Table 4.4.1-6: Survey Results Regarding Respondents' Use of Their Local Rivers

Use	12-County Klamath Area	Rest of CA & OR (Excluding the 12-County Klamath Area)	Rest of the US (Excluding CA & OR)
Recreational boating or rafting	57.9%	49.7%	61.5%
Transportation	2.3%	4.5%	9.6%
Swimming	48.8%	40.11%	42.0%
Near-shore recreation (such as hiking, picnicking, or bird watching)	59.4%	56.4%	52.4%
Recreational fishing	63.6%	44.0%	56.1%
Commercial fishing	2.2%	3.8%	4.3%
Irrigating farmland	15.4%	13.3%	11.9%
Drinking water	23.0%	29.3%	27.4%
Spiritual or ceremonial purposes	10.5%	5.2%	4.6%
My electric power comes from a hydroelectric-power dam	38.5%	18.6%	15.2%
Other	4.3%	4.3%	3.6%
None of the above	6.2%	14.0%	13.0%

Respondents were also asked their opinions regarding the importance of using rivers for different purposes. Overall, respondents either agreed or strongly agreed that rivers were important:

- As a source of electric power 48 percent
- To provide places for recreation 73 percent
- To provide healthy habitat for fish 92 percent
- As a source of water for irrigation 68 percent
- To provide Indian tribes with traditional fishing areas 59 percent
- To support commercial fishing 32 percent

Several survey questions focused specifically on respondents opinions regarding fish species in the Klamath Basin. A large majority of respondents in each of the regions surveyed were concerned or very concerned about declines or the risk of extinction to Klamath Basin fish species. Table 4.4.1-7 describes the distribution of responses pertaining to concern for the fish species highlighted in the survey. The highest levels of concern were for the high risk of extinction for coho salmon. The opinions of 12-county Klamath respondents were divided; although a sizeable percentage strongly agreed that the fish populations warranted concern, the percentages disagreeing and strongly disagreeing were higher in the 12-county Klamath area than in the other two areas.

			clines in the numb rn to the Klamath	•	
	Strongly			Strongly	No
$(p = 0.0000)^{1}$	Agree	Agree	Disagree	Disagree	Opinion
12-County Klamath Area	40.9%	32.9%	12.5%	5.4%	8.4%
Rest of CA & OR (Excluding the 12-County Klamath Area)	42.6%	39.9%	5.4%	2.2%	9.9%
Rest of the U.S. (Excluding CA & OR)	35.1%	43.7%	4.9%	1.3%	15.1%
		rned about the sk of extinctio	e shortnose and Lo n.	ost River sucker	s that are at
	Strongly			Strongly	No
$(p = 0.0000)^{1}$	Agree	Agree	Disagree	Disagree	Opinion
12-County Klamath Area	23.8%	26.6%	17.2%	16.8%	15.6%
IL County Manhath / H Cu	23.070				
Rest of CA & OR (Excluding the 12-County Klamath Area)	35.9%	38.4%	8.5%	3.4%	13.8%
•			8.5% 8.1%	3.4% 2.7%	13.8% 15.3%
Rest of CA & OR (Excluding the 12-County Klamath Area)	35.9% 30.1%	38.4% 43.8% rned about the		2.7%	15.3%
Rest of CA & OR (Excluding the 12-County Klamath Area)	35.9% 30.1% I am concer	38.4% 43.8% rned about the	8.1%	2.7%	15.3%
Rest of CA & OR (Excluding the 12-County Klamath Area)	35.9% 30.1% I am concer of extinction	38.4% 43.8% rned about the	8.1%	2.7% Ilmon that are o	15.3% at high risk
Rest of CA & OR (Excluding the 12-County Klamath Area) Rest of the U.S. (Excluding CA & OR)	35.9% 30.1% I am concer of extinctio Strongly	38.4% 43.8% rned about the	8.1% e Klamath coho sa	2.7% Ilmon that are of	15.3% at high risk
Rest of CA & OR (Excluding the 12-County Klamath Area) Rest of the U.S. (Excluding CA & OR) (p = 0.0000) ¹	35.9% 30.1% I am concer of extinctio Strongly Agree	38.4% 43.8% rned about the n. Agree	8.1% e Klamath coho sa Disagree	2.7% Ilmon that are of Strongly Disagree	15.3% at high risk No Opinion

Pearson Design-based chi-squared test of association across strata (< .05 indicates strong likelihood of strata-level statistical association).

Table 4.4.1-8 presents survey responses on opinions about Klamath Basin dam removal plans. A larger percent (56 percent) of respondents in the rest of the U.S. agreed or strongly agreed that Oregon and California residents should pay more, compared to 40 percent in the Oregon and California stratum, and 24 percent in the 12-county Klamath area stratum.

Table 4.4.1-8: Respondents' Opinions Regarding Klamath River Basin Dam Removal Plans

Do you agree or disagree that Oregon and California residents should, on average, pay more than residents of other states for Klamath River Basin restoration?

			See			
	Strongly		Both		Strongly	No
$(p = 0.0000)^{1}$	Agree	Agree	Sides	Disagree	Disagree	Opinion
12-County Klamath Area	6.0%	18.3%	29.4%	18.0%	24.3%	4.1%
Rest of CA & OR (Excluding the 12-County Klamath Area)	9.2%	30.7%	26.7%	16.4%	11.4%	5.6%
Rest of the U.S. (Excluding CA & OR)	25.4%	30.6%	29.0%	6.2%	1.9%	7.0%

Do you agree or disagree that the Federal government should be involved in restoring the Klamath River Basin?

			See			
	Strongly		Both		Strongly	No
$(p = 0.0000)^{1}$	Agree	Agree	Sides	Disagree	Disagree	Opinion
12-County Klamath Area	26.2%	25.4%	17.8%	11.4%	15.7%	3.5%
Rest of CA & OR (Excluding the 12-County Klamath Area)	33.0%	33.9%	16.4%	6.8%	5.7%	4.2%
Rest of the U.S. (Excluding CA & OR)	23.4%	36.2%	19.3%	8.5%	6.8%	5.8%

¹ Pearson Design-based chi-squared test of association across strata (< .05 indicates strong likelihood of strata-level statistical association).

Just as a majority of respondents expressed concern about the welfare of Klamath Basin resources, a majority also expressed the view that the Federal government should be involved in restoring the Basin. About 52 percent of the respondents from the 12-county Klamath area agreed or strongly agreed that the Federal government should be involved in restoring the Klamath Basin; this compares to 67 percent in the rest of California and Oregon and 60 percent in the rest of the U.S. For both sets of responses displayed in the table, the differences in the distribution of responses across the three geographic areas were statistically significant.

Beyond general Federal government involvement in restoration, the survey asked respondents to vote on whether they would support an Action plan for restoration of Klamath Basin resources or would instead support No Action. The No Action plan scenario provided in the survey was the same for all respondents. Multiple Action plan scenarios were developed. All Action plans contained the three main elements of the KHSA and KBRA: dam removal, the water-sharing agreement, and fish restoration projects. Attributes of the Action plan scenarios that varied included the cost of the plan to the household, the percent increase in Chinook salmon and steelhead trout abundance, and the extinction risk for the shortnose and Lost River suckers and the coho salmon. Each respondent was randomly assigned one of the Action plan scenarios.

Table 4.4.1-9 shows the percent of respondents who voted for the Action and No Action plans by geographic stratum and in total. The table reports the total voting for any Action plan scenario, independent of the attribute levels. Roughly

55 percent, 71 percent, and 66 percent of the respondents from the 12-county Klamath area sample, rest of Oregon and California sample, and the rest of the U.S. sample, respectively, voted in favor an Action plan scenario.

Table 4.4.1-9: Vote on Action Plan Scenarios, by Sample Area

Vote on Action Plan (p = 0.000) ¹	12-County Klamath Area	Rest CA & OR (Excluding the 12-County Klamath Area)	Rest of the US (Excluding CA & OR)
Voted for No	45.3%	28.7%	33.7%
Action	(680)	(491)	(575)
Voted for Action	54.7%	71.3%	66.3%
plan	(820)	(1,220)	(1,130)
Total	1,500	1,711	1,705

Pearson Design-based chi-squared test of association across strata (< .05 indicates strong likelihood of strata-level statistical association).

A majority of respondents in each region supported an Action plan over No Action to restore the Klamath Basin. As expected, the percent of respondents voting for an Action plan decreased as the household cost of the plan increased. However, even at the highest cost, 55.3 percent of the respondents for all geographic areas combined still voted in favor of an Action plan (see Table 4.4.1-10).

Table 4.4.1-10: Vote by Annual Cost of Plan to Household

	\$12	\$48	\$90	\$168
Voted for	72.9%	65.9%	65.9%	55.3%
Action plan				

After the respondents voted for either an Action or No Action plan, the survey presented them with a series of statements related to their choices between the Action and No Action plans. Fewer than 30 percent of respondents in any region either agreed or strongly agreed with the statement that their answers would have been different if the economy were better (see Table 4.4.1-11). Significantly fewer than half of the respondents in each region agreed or strongly agreed with a statement that they should not have to contribute to the restoration of the Klamath Basin. When asked about the statement that removing the dams from the Klamath River is a bad idea, approximately 42 percent of respondents in the 12-county Klamath area sample agreed or strongly agree compared to roughly 20 percent each for the rest of Oregon and California and rest of the United States samples. Around 40 percent of respondents in the 12-county Klamath area agreed or strongly agreed with the statement that they are concerned the plan would hurt the economy of the Klamath Basin, while 25 percent and 22 percent of respondents in the rest of Oregon and California and rest of the United States samples, respectively, agree or strongly agreed with this statement. In terms of the amount of information provided to make a choice, at least 67 percent of respondents in each sample agree or strongly agreed that the survey provided enough information to make a choice between the Action versus No Action plan options.

Table 4.4.1-11: Extent of Respondents' Agreement with Statements Regarding the Survey and the Choices Provided in the Survey

	My choices were better		e been different if	the economy	in my area
	Strongly		Neither Agree		Strongly
$(p = 0.001)^{1}$	Agree	Agree	nor Disagree	Disagree	Disagree
12-County Klamath Area	8.9%	16.0%	28.0%	29.1%	18.0%
Rest of CA & OR (Excluding the 12-County Klamath Area)	8.9%	19.7%	27.8%	29.0%	14.6%
Rest of the U.S. (Excluding CA & OR)	10.1%	19.4%	31.8%	27.5%	11.3%
	I do not thir the Klamati		have to contribute n	to the restor	ation of
	Strongly		Neither Agree		Strongly
$(p = 0.000)^1$	Agree	Agree	nor Disagree	Disagree	Disagree
12-County Klamath Area	15.9%	17.9%	27.5%	29.2%	9.5%
Rest of CA & OR (Excluding the 12-County Klamath Area)	7.4%	16.4%	29.5%	35.5%	11.1%
Rest of the U.S. (Excluding CA & OR)	11.9%	22.3%	33.2%	25.9%	6.8%
	Removing the dams from the Klamath River is a bad idea			dea	
	Strongly		Neither Agree		Strongly
$(p = 0.000)^{1}$	Agree	Agree	nor Disagree	Disagree	Disagree
12-County Klamath Area	22.5%	19.4%	20.1%	22.0%	16.1%
Rest of CA & OR (Excluding the 12-County Klamath Area)	5.8%	13.8%	30.7%	34.3%	15.4%
Rest of the U.S. (Excluding CA & OR)	6.5%	13.9%	35.7%	31.6%	12.3%
	I am concer Klamath Riv		e plans would hur	t the econom	y in the
	Strongly		Neither Agree		Strongly
$(p = 0.000)^{1}$	Agree	Agree	nor Disagree	Disagree	Disagree
12-County Klamath Area	14.1%	25.9%	32.3%	21.4%	6.3%
Rest of CA & OR (Excluding the 12-County Klamath Area)	2.8%	22.3%	44.0%	25.4%	5.6%
Rest of the U.S. (Excluding CA & OR)	3.5%	18.4%	43.0%	30.1%	5.0%
	The survey	orovided m	e with enough info	ormation to n	nake a
	choice between the options shown				
	Strongly		Neither Agree		Strongly
(p = 0.066)	Agree	Agree	nor Disagree	Disagree	Disagree
12-County Klamath area	18.0%	52.4%	17.5%	9.6%	2.5%
Rest of CA & OR (Excluding the 12-County Klamath Area)	15.4%	51.4%	21.8%	8.7%	2.6%
Rest of the U.S. (Excluding CA & OR)	14.9%	56.1%	18.5%	8.7%	1.8%

¹ Pearson Design-based chi-squared test of association across strata (< .05 indicates strong likelihood of strata-level statistical association).

Table 4.4.1-12 contains two sets of estimates of economic value expressed as household willingness to pay (WTP). The first set of values reflects the average household WTP to have a "minimal" Action plan implemented. This Action plan is defined as a 30 percent increase in Chinook salmon and steelhead trout returning to the river each year, sucker extinction rates declining from very high to high, and coho extinction rates declining from high to moderate, along with the three common elements associated with all Action plans: dam removal, the water-sharing agreement, and fish restoration projects. This Action plan was compared to the No Action plan (no increase in fish returning to the river, very high extinction rate for the suckers and a high extinction rate for the coho salmon, along with no dam removal, no water-sharing agreement, and no fish restoration projects).

The second set of values reflects the average household WTP associated solely with reducing the extinction risk of coho salmon from high to moderate. These values are presented to provide additional context by isolating household WTP

for one component of the minimal Action plan. Although the extinction risk for coho salmon would improve, such improvement would not lead to delisting. This indicates there would be very little possibility of any use values (e.g., recreational fishing) associated with this species in the foreseeable future under the minimal Action plan. As such, this value can be viewed as a conservative estimate of nonuse value because it does not also include any nonuse values associated with reduction in extinction risks for suckers, population improvements for Chinook salmon and steelhead trout, dam removal, the water-sharing agreement, and fish restoration projects (i.e., the other components of the minimal Action plan).⁵

Table 4.4.1-12: Average Household Annual WTP Values with 95% Confidence Interval² (\$)

Plan		Rest CA & OR (Excluding	
	12-County Klamath Area	the 12-County Klamath Area)	Rest of the US (Excluding CA & OR)
Annual WTP per household for 20 years for "minimal" Action Plan relative to No Action ¹	\$121.85 (\$79.09 - \$164.61)	\$213.03 (\$160.9 - \$265.15)	\$213.43 (\$155.7 - \$271.16)
PV over 20 years of annual Household WTP for "minimal" Action plan relative to No Action	\$1,637.76 (\$1,063.06 - \$2,212.54)	\$2,863.30 (\$2,162.68 - \$3,563.92)	\$2,868.72 (\$2,092.78 - \$3,644.70)
Annual WTP per household for 20 years for reduced extinction risk for coho salmon from high to moderate	\$37.75 (\$8.93 - \$66.58)	\$49.10 (\$15.1 - \$83.09)	\$38.39 (\$0.12 - \$76.66)
PV over 20 years of annual household WTP for reduced extinction risk for coho salmon from high to moderate	\$507.44 (\$120.03 - \$894.91)	\$659.91 (\$202.96 – 1,116.82)	\$515.98 (\$1.61 - \$1,030.40)

¹ The Action plan attributes include a 30 percent increase in Chinook salmon and steelhead trout returning to the river each year, high extinction rates for the suckers, and moderate extinction rates for the coho salmon. The "No Action" plan attributes are no increase in number of fish returning to the river, very high extinction rate for the suckers, and a high extinction rate for the coho salmon.

The estimated average per household annual WTP value associated with the minimal Action plan for the 12-county Klamath area is about \$122 per year, compared to about \$213 and \$214, respectively, for the rest of Oregon and California and the rest of the United States samples. The WTP values in the 12-county Klamath area are lower than the other two geographic areas, reflecting the larger percentage of respondents in that stratum who voted for the No Action plan.

The table presents results for a "restricted sample" that was created by dropping respondents who strongly agreed that the Klamath Basin should be restored no matter what it cost. These respondents may not have been assessing the trade-off between the Action plan and the No Action plan. The standard errors and confidence intervals for these value estimates were estimated using the Krinsky and Robb (1986) simulation method.

It is not possible, given the survey design, to isolate purely nonuse values for all aspects of the minimal Action plan. However, the survey format did allow WTP to be isolated for reducing the extinction risks for coho salmon from high to moderate, which would be a subset of overall nonuse value associated with the minimal Action plan.

The household WTP values estimated from the survey are comparable to other similar studies, although the values are on the high end of the studies. However, the WTP values need to be interpreted with a clear understanding of the scope of the benefits described in the survey. Each of the Action plans involved removing the dams, establishing water sharing agreements, and improving fish habitat. While the survey varied the size of the improvements to the three fish species in different versions of the Action plans, it is important to note that the plans included impacts beyond just improvements for the fish. The survey described significant problems during droughts in the early 2000's and also described how most of the parties reached an agreement in 2010. As such, the values estimated from this survey reflect a large scope of potential benefits, thus making it difficult to directly compare these results to other surveys that focused more narrowly on improvements for individual fish species or water quality.

Table 4.4.1-13 presents the aggregated discounted present value (PV) WTP estimates. These estimates were derived by applying the PV WTP per household values from Table 4.4.1-12 to the relevant household population in each geographic stratum after accounting for nonrespondents, "yea saying", and non-English speaking households. The total discounted PV of WTP across the three strata is \$84.271 billion. The 12-county Klamath area WTP comprises \$217 million of the total; the rest of Oregon and California comprises \$9.071 billion, and the rest of the U.S. comprises \$74.983 billion. It should be noted that the aggregate WTP estimates in the left hand column of Table 4.4.1-13 represent total economic value, in that they include nonuse values as well as use values.

⁶ RTI International, Final Report, *Klamath River Basin Restoration Nonuse Value Survey*, November 18, 2011 contains a discussion of other studies. No studies to date have used SP methods to estimate total household values (including nonuse values) for the environmental benefits expected to result from the Klamath agreements; however, a limited number of studies have used these methods to investigate values for related programs in other parts of the United States. Although a number of other economic valuation studies have addressed dam removal activities in the United States, most of them have applied RP methods and focused on use-related values. The values estimated in other previous studies are not directly comparable to this study because the context of other studies is different, the extent of the market is different, and different time periods were considered. The one study that is most directly comparable to this Klamath study is the Loomis (1996) analysis of dam removal and salmon restoration on the Elwha River in Washington. The scope of the project and affected area are smaller than the Klamath project; however, the Elwha study also estimates annual household WTP for three separate strata. It estimates average values ranging from \$87 per year for the local population to \$107 for the rest of the state and \$100 for the rest of the country (converted to 2010 dollars). The other studies, which examine a wide variety of dam removal and/or river ecosystem restoration projects, produce annual estimates that range from less than \$20 to almost \$600 per year.

To account for potential effects of survey nonrespondents, a conservative approach was taken that aggregated household WTP over a portion of households equal to the proportion of the sample that returned the survey, based on the response rate for each geographic sample, and also accounting for respondents who skipped the SP choice questions and those who were dropped when adjusting for potential "yea saying". "Yea saying" respondents were identified as those who strongly agreed that the Klamath River Basin should be restored no matter what it cost. These respondents may not have been assessing the trade-off between the Action plan and the No Action plan. The calculation of aggregate WTP also excludes non-English speaking households because the survey was in English and non-English speaking households may not have completed the survey.

The aggregate discounted PV WTP estimates presented in Table 4.4.1-13 indicate that respondents support and see significant value in the restoration of Klamath Basin resources, even for resources not supporting any of the many direct use activities within the Klamath Basin.

Table 4.4.1-13: Aggregate Present Value of Household WTP Over 20 Years, with 95% Confidence Interval, (\$ billions)

	PV of Household Annual WTP for "minimal" Action Plan Relative to No Action, Aggregated over Households, for 20 years (\$ billions)	PV of Household Annual WTP for reducing the extinction risk for coho salmon from high to moderate, Aggregated over Households, for 20 years (\$ billions)
12-County Klamath Area	\$0.217 (\$0.141–\$0.293)	\$0.067 (\$0.016–\$0.119)
Rest of CA & OR (Excluding the 12-County Klamath Area)	\$9.071 (\$6.851–\$11.290)	\$2.091 (\$0.643–\$3.538)
Rest of the U.S. (Excluding CA & OR)	\$74.983 (\$54.701–\$95.265)	\$13.487 (\$0.042–\$26.933)
Total	\$84.271 (\$61.694–\$106.850)	\$15.645 (\$0.701–\$30.589)

A conservative estimate of nonuse value is given by the values in the right hand column of Table 4.4.1-13 that represents the present value of aggregate household WTP for solely reducing the extinction risk for coho salmon from high to moderate. For all three strata combined, the total discounted PV of WTP is \$15.6 billion. The 12-county Klamath area WTP comprises \$67 million of the total; the rest of Oregon and California comprises \$2.091 billion, and the rest of the U.S. comprises \$13.487 billion. It should be noted that these aggregate WTP estimates represent a conservative estimate of nonuse values in that they do not also include any nonuse values associated with reduction in extinction risks for suckers, population improvements for Chinook salmon and steelhead trout, dam removal, the water-sharing agreement, and fish restoration projects (i.e., the other components of the minimal Action plan).

Cost Analyses

This section summarizes analyses contained in *Economics and Tribal Summary Technical Report* (Reclamation 2011c).

Project Costs

Project costs include KBRA restoration costs, facility removal costs, site mitigation costs, and operations, maintenance, and replacement (OM&R) costs.

KBRA Restoration

Annual KBRA costs from 2012 through 2026 were obtained from the KBRA for the Sustainability of Public and Trust Resources and Affected Communities (February 18, 2010), Appendix C-2 Revised, Budget of Implementation of Agreement. Because these costs were presented in 2007 dollars, they were escalated to 2012 dollars using the gross domestic product implicit price deflator to be consistent with the other costs and benefits included in this report.

Table 4.4.1-14 summarizes KBRA costs by year. It is assumed that KBRA cost components incurred under the Dams In scenario would be covered by agency base funding. The full and partial facilities removal options include KBRA costs that are in addition to base funds assumed for the Dams In scenario. Partial facilities removal would have the same costs as full facilities removal for KBRA implementation.

Table 4.4.1-14: Agency Base Funding and KBRA Program Costs (Million \$, 2012 dollars)

Year	Base Funding Total Costs	KBRA Program Total Costs	KBRA Program Costs Incremental to Base Funding
2012	15.862	25.2	9.4
2013	15.410	66.1	50.7
2014	15.396	65.1	49.7
2015	19.003	62.0	43.0
2016	20.195	66.7	46.5
2017	20.101	66.7	46.6
2018	20.447	84.1	63.6
2019	20.573	113.1	92.5
2020	20.773	101.6	80.8
2021	16.439	46.9	30.5
2022	14.853	37.0	22.1
2023	14.853	34.2	19.4
2024	14.853	32.6	17.8
2025	14.853	30.6	15.7
2026	14.853	28.5	13.6
Total	258.466	860.4	601.9
Discounted	199.101		474.1

Source: Reclamation 2011c

Four Facilities Removal and Site Mitigation

Four Facilities removal costs, which would occur during the single year, deconstruction period for each facility removal option (year 2020), include field costs related to construction contracts and noncontract costs related to engineering design, permitting, and construction management. Four Facility removal costs include removal of J.C. Boyle, Copco 1, Copco 2, and Iron Gate dams and replacement of the Yreka water supply line.

Tables 4.4.1-15 and 4.4.1-16 show facilities removal and total mitigation costs for full and partial facilities removal, respectively. Cost estimates for facility removal, which would occur in year 2020, totaled \$178.4 million (2012 dollars). For use in the NED benefit-cost analysis, the full facilities removal cost estimate (\$178.4 million) was discounted to year 2012, resulting in an estimate of \$129.1 million. Cost estimates for partial facilities removal totaled \$135.4 million (2012 dollars). For use in the NED benefit-cost analysis, the partial removal cost estimate (\$135.4 million) was discounted to year 2012, resulting in an estimate of \$98.0 million.

Site mitigation costs represent the costs to mitigate effects on environmental and cultural resources. Estimated mitigation costs for both full and partial facilities removal are expected to occur during an eight-year period (2018–2025). The eight-year stream of mitigation costs for full facilities removal was discounted to year 2012, resulting in an estimate of \$37.7 million. For partial

facilities removal, the eight-year stream of mitigation costs was discounted to year 2012, resulting in an estimate of \$36.6 million. These discounted values were used in the NED benefit-cost analysis calculation.

Table 4.4.1-15: Full Four Facilities Removal and Total Site Mitigation Costs for Full Facilities Removal (2012 dollars)¹

Cost Element	J.C. Boyle (\$M)	Copco 1 (\$M)	Copco 2 (\$M)	Iron Gate (\$M)	Yreka Water Supply (\$M)	Total (\$M)
Facility removal	36.0	65.0	15.0	59.0	3.4	178.4
Mitigation	10.5	18.9	4.3	17.2	1.0	51.9
Facility removal and mitigation	46.5	83.9	19.3	76.2	4.4	230.3
Facility removal and mitigation (2020 \$)	59.0	105.0	24.0	98.0	5.6	291.6

Source: Reclamation 2011c

Table 4.4.1-16: Partial Four Facilities Removal and Total Site Mitigation Costs for Partial Facilities Removal (2012 dollars)¹

Cost Element	J.C. Boyle (\$M)	Copco 1 (\$M)	Copco 2 (\$M)	Iron Gate (\$M)	Yreka Water Supply (\$M)	Total (\$M)
Facility removal	24.0	46.0	7.0	55.0	3.4	135.4
Mitigation	9.0	17.1	2.6	20.7	1.0	50.4
Facility removal and mitigation	33.0	63.1	9.6	75.7	4.4	185.8
Facility removal and mitigation (2020 \$)	41.0	79.0	12.0	97.0	5.6	234.6

Source: Reclamation 2011c

Operation, Maintenance, and Replacement

The operations, maintenance, and replacement (OM&R) costs would occur every year under the Dams In scenario. These costs were estimated to average \$9.34 million and range from a high of \$31.98 million to a low of \$4.37 million. The discounted stream of annual OM&R costs across the 2012–2061 period equates to \$219.4 million. Because certain OM&R costs would no longer be incurred under the proposed facilities removal options, the eliminated OM&R costs would reflect a cost savings. The average annual OM&R cost savings during 2021-2061 associated with both dam removal options was estimated at \$8.64 million (discounted value equals \$188.9 million). Under the partial facility removal option, an additional cost associated with maintaining the facilities left in place would be required. The stream of remaining facility maintenance costs during 2021–2061 discounts to \$6.5 million. Combining the discounted cost savings (\$188.9 million) with the additional discounted maintenance costs (\$6.5

¹ Except where indicated.

¹ Except where indicated.

million) results in an estimated discounted cost savings of \$182.4 million for the partial facilities removal option. Table 4.4.1-17 summarizes OM&R cost saving for full and partial facilities removal relative to the Dams In scenario.

Table 4.4.1-17: Average Annual and Total Discounted Value OM&R Costs (Million \$, 2012 dollars)

	Dams In Costs	Full Facilities Removal Cost Savings Relative to Dams In	Cost Savings Relative to Dams In	Partial Facilities Additional Cost for Remaining Facilities	Net OM&R Cost Savings
Average Annual	9.34	-8.64	-8.64	not available	not available
Discounted Value	219.4	-188.9	-188.9	6.5	-182.4

Source: Reclamation 2011c

Foregone Benefits

Several benefit categories (hydropower, reservoir recreation, and whitewater recreation) result in foregone benefits because Four Facilities removal would provide fewer benefits than the Dams In scenario. These foregone benefit categories are presented as project costs.

Hydropower

This section is from *Economics and Tribal Summary Technical Report* (Reclamation 2011c) and the *Hydropower Benefits Technical Report* (Reclamation 2011f). These reports discuss methods to evaluate effects and results in detail.

The four Klamath River hydropower plants generate an average of 895,846.9 megawatt hours of electricity annually. Dependable capacity, a measure of the maximum generation capability available on a reliable basis, was estimated to be 55.9 MW in summer and 66.6 MW in winter, using the 90 percent exceedence method. The output from these four plants was estimated to have a mean discounted present value of \$1,609.3 million (2012 dollars) over the 50-year analysis period.

Under the Dams Out scenario, the four Klamath River hydropower plants were expected to operate normally during 2012–2019 (8 years). The analysis assumed that production of electrical energy and capacity at the four hydropower plants was expected to be zero from January 1, 2020 through the end of 2061 (42 years). With Four Facilities removal, the estimated mean discounted present value of hydropower economic benefits was approximately \$289.2 million (2012 dollars), over the 50-year analysis period. Relative to the dams remaining in place, this represents a mean reduction in economic benefits of \$1,320.1 million (2012 dollars)—a loss of approximately 82 percent. Partial facilities removal would have the same effects as full facilities removal (See Table 4.4.1-18).

Table 4.4.1-18: Total Discounted Value of Forgone Hydropower Economic Benefits of Dams Out Relative to Dams In (Million \$, 2012 dollars)

	Dams In	Dam Removal	Difference between Dam Removal and Dams In
Total Discounted Value	1,609.3	289.2	-1,320.1

Source: Reclamation 2011c

Whitewater Boating

This section is from Reclamation 2011c and the *Whitewater Boating Recreation Economics Technical Report* (DOI 2011d). These reports provide further explanation regarding how the economic effects on whitewater boating were evaluated and provide additional detail on the overall results.

Whitewater boating occurs on the upper Klamath River, defined as Link Dam to Iron Gate Dam, and on the Lower Klamath River, defined as Iron Gate Dam to the Pacific Ocean. Whitewater boating on the upper Klamath River, which primarily occurs on the Hell's Corner Reach, is dependent upon releases made from the J.C. Boyle Dam; therefore, the loss of the J.C. Boyle Dam could decrease the potential for whitewater boating.

Under the Dams In scenario, whitewater boating activity would not be affected. Under the Dams Out scenario, whitewater boating activity on the upper Klamath River would be affected beginning in 2020 due to the dependence on water releases from the J.C. Boyle Dam to provide sufficient and predictable flows, primarily for whitewater boating along the Hell's Corner Reach. Analysis of predicted hydrology modeling shows that the average number of days with acceptable flows for whitewater boating on the Hell's Corner Reach would decline by 47.3 percent during the five month period from May through September (months when the majority of whitewater boating activity occurs annually) and decline by 29.5, 36.4, and 88.2 percent in June, July and August, respectively, relative to the Dams In scenario. The combination of the decline in the number of days with acceptable flows, particularly during the three months when most of the use is observed (June, July, and August), and the lack of consistency and predictability of days with acceptable flows could make it more challenging for outfitters to continue offering trips for this reach of the upper Klamath River in the future. Therefore, it is assumed whitewater boating activity on the upper Klamath River would be negatively affected by facilities removal. Analysis of the predicted hydrology for the Klamath River under the Dams In and Dams Out scenarios shows the average number of days with acceptable flows for whitewater boating on the Lower Klamath River would not change in any measurable way. Therefore, it is assumed that the level of whitewater boating on the Lower Klamath River is not affected.

Whitewater boating use for the entire Klamath River projected for the period of analysis (2012–2061) is estimated to be 868,211 to 1,012,362 user-days. The total discounted present value of whitewater boating on the Klamath River is estimated to range from \$29.8 to \$35.6 million under the Dams In scenario, with a

midpoint estimate of \$32.7 million. The total discounted present value of the loss in economic value associated with whitewater boating recreation under Dams Out, measured as a change from Dams In, is estimated to be \$5.4 to \$6.9 million, with an associated loss of 101,768 to 130,341 user days. The midpoint estimate of \$6.1 million for the total discounted present value loss in economic value for whitewater boating was used in the NED benefit-cost analysis. Partial facilities removal would have the same effects as full facilities removal (see Table 4.4.1-19).

Table 4.4.1-19: Total Discounted Value of Forgone Whitewater Boating Benefits of Dams Out Relative to Dams In (Million \$, 2012 dollars)

	Dams In	Dam Removal	Difference between Dam Removal and Dams In
Total Discounted Value	32.7	26.6	-6.1

Source: Reclamation 2011c

Reservoir Recreation

This section is from *Economics and Tribal Summary Technical Report* (Reclamation 2011c) and the *Reservoir Recreation Economics Technical Report* (Reclamation 2011l). These reports discuss methods to evaluate effects and results in detail. Changes in recreation visitation at each reservoir for the Dams Out compared to Dams In were adjusted to account for possible site substitution. Visitors from outside the market area were assumed not to substitute. Conversely, only a small portion of within-market-area visitors was assumed not to substitute. The non-substituting portion was based on visitors who identified each reservoir as their favorite site.

Total visitation in year 2002 (year of the PacifiCorp recreation survey) (FERC 2007) at the three reservoirs (J.C. Boyle, Copco 1, and Iron Gate) was estimated in the PacifiCorp recreation report at 95,470 recreation days. Projections based on PacifiCorp's annual activity-specific growth rates results in an estimated 112,900 days in 2020 and 167,500 days in 2061 across the three reservoirs (no recreation occurs in Copco 2 Reservoir). Aggregating visitation across all three reservoirs for 2020–2061 totals over 5.8 million recreation days. With the Dams In, the total discounted reservoir recreation economic value for the three reservoirs is estimated to be \$99.5 million.

A significant blue-green algae problem exists at Copco 1 and Iron Gate reservoirs (but not J.C. Boyle Reservoir), sufficient to warrant health advisories related to water ingestion or contact. These advisories suggest avoiding use of water for cooking and washing as well as avoiding the consumption of fish. While these advisories have been in place for several years, no data exist as to their impact on recreation visitation. Should these algae problems continue across the 50-year period of analysis for this study, a significant percentage of visitations at Copco 1 and Iron Gate Reservoirs may be lost. This could significantly reduce the baseline level of recreation visitation and value with the dams remaining in place. However, the algae problem is unlikely to expand into J.C. Boyle Reservoir

due to manner in which water flushes through the reservoir. At this point, the impact of the blue-green algae problem on visitation is unknown, so attempting to provide algae adjusted visitation estimates is speculative.

Under the facility removal options the dams would be removed and reservoirs would be lost. As a result, pursuing facilities removal would imply a loss in reservoir recreation visitation and value as compared to the dams remaining in place.

Adjusting for site substitution, whereby a significant portion of potentially lost Copco 1, Iron Gate, and J.C. Boyle recreation visitations would substitute to other lakes and reservoirs in the area (for further discussion on substitution see *Reservoir Recreation Economics Technical Report* [Reclamation 2011l]), total reservoir recreation losses for the facility removal options, measured as a change from the dams remaining in place, were estimated at 2.03 million recreation days and \$35.4 million in discounted economic value. Partial facilities removal would have the same effects as full facilities removal.

Tribal Fisheries and Related Effects

This section focuses on changes in tribal fishing opportunities and how they affect tribal members' standard of living, cultural and social practices, and ability to carry out resource stewardship responsibilities. The analysis focuses on five of the six federally recognized tribes in the Klamath Basin (Klamath Tribes, Karuk Tribe, Yurok Tribe, Resighini Rancheria, Hoopa Valley Tribe). Based on information available at the time of this analysis, the sixth tribe, the Quartz Valley Indian Community, was not expected to be directly affected by the Dam Removal scenario. Information in this section is from the *Economics and Tribal Summary Technical Report* (Reclamation 2011c), *Hoopa Valley Tribe Fishery Socioeconomics Technical Report* (NOAA Fisheries Service 2011b), *Karuk Tribe Fishery Socioeconomics Technical Report* (NOAA Fisheries Service 2011d), *Klamath Tribes Fishery Socioeconomics Technical Report* (NOAA Fisheries Service 2011g), and *Yurok Tribe Fishery Socioeconomics Technical Report* (NOAA Fisheries Service 2011g), and *Yurok Tribe Fishery Socioeconomics Technical Report* (NOAA Fisheries Service 2011h).

For the tribes of the Klamath Basin, fish are integral to a worldview that emphasizes interconnectedness, balance, and mutual respect as guiding principles. The diversity, abundance, distribution, run timing and health of fish are important indicators of how well such balance is being maintained. The seasonal round of harvest provides sustained access to food that is synchronous with the cycles of nature. Fish are honored in rituals such as the First Salmon Ceremony and (for the Klamath Tribes) the Return of the C'waam, which traditionally precede the commencement of fishing for spring Chinook and suckers respectively. Fishing itself is a social and cultural activity — an opportunity to meet with family and friends; to engage in traditional fishing practices; to strengthen community bonds, demonstrate respect and promote food security by sharing fish with elders and others who are unable to fish; and to transmit these traditions to the next generation. Trade and barter occur both

within and between tribes as a means of increasing access to fish and other valued goods, and cementing social relationships.

While fish has been central to the daily life and culture of the tribes, access to fish has declined due to reductions in abundance and distribution and loss of access to traditional fishing sites. These changes have affected the tribes' dietary habits and well-being, as well as their cultural, ritualistic and social lives. Despite these challenges, the tribes have been persistent in ensuring continuation of practices and values that have been a part of their worldview for many centuries.

Sedimentation and water quality changes associated with dam removal may have adverse short-term effects on fish stocks that inhabit areas downstream of the dams. Over the longer term, dam removal and successful implementation of the KBRA are expected to increase tribal harvest opportunities on the Klamath River. These actions, however, are not expected to affect the productivity of Hupa fisheries (which depend on Trinity River stocks).

Effects of dam removal and KBRA on Klamath Basin stocks (excluding the Trinity River) can be summarized as follows:

- Steelhead is expected to increase in abundance and extend its distribution to areas currently under the reservoirs and upstream to Keno Dam; expansion upstream of Keno Dam is possible but not certain (Dunn et al. 2011).
- Redband trout is expected to increase in abundance and distribution in Upper Klamath Lake and its tributaries and also downstream of Keno Dam (Buchanan et al. 2011).
- Pacific lamprey harvest potential downstream of Keno Dam is expected to increase from one to ten percent over the long term due to habitat improvement and recolonization of the reach between Iron Gate Dam and Keno Dam. Harvest potential upstream of Keno Dam is possible but more uncertain (Close et al. 2010).
- Sucker populations in the upper Klamath Basin are expected to increase over the long term, although anything more than tribal ceremonial harvest would be unlikely until a sustained upward trend in the population is observed (Buchanan et al. 2011).
- The SONCC coho ESU is listed as "threatened" under the ESA. This ESU is comprised of coho populations both inside and outside the Klamath Basin (Williams et al. 2008). Dam removal is expected to lead to an increase in the viability of Klamath River coho populations and advance the recovery of the ESU (Dunne et al. 2011). However, since dam removal does not include coho restoration outside the Klamath Basin, it alone will not create conditions that would warrant de-listing of the SONCC coho ESU throughout its range.

4.4.1 Economic Analysis

Tribal harvest of spring and fall Chinook on the Klamath River is expected to increase by 50 percent (Hendrix 2011) on an average annual basis (from 31,127 fish to 46,682 fish) during 2012–61 with facilities removal. This projection is subject to considerable uncertainty due to natural biological and environmental variability and other factors. Despite this uncertainty, tribal harvest is projected to be higher in 74 percent of years with facilities removal, as compared with no facilities removal. In 2006, unusually low Klamath River fall Chinook abundance triggered major regulatory restrictions for all Chinook fisheries (including tribal fisheries). Such conditions are projected to occur in 80 percent fewer years under facilities removal.

Fall-run Chinook salmon (which has a sizable hatchery component) currently comprises a much larger share of tribal harvest than spring-run Chinook salmon, which is at low levels of abundance. This stock composition is likely to persist in the future under the Dams In scenario. A modest harvestable surplus of spring Chinook may become available under Dams Out (Goodman et al. 2011, Hamilton et al. 2011, Lindley and Davis 2011). This harvest opportunity would be beneficial to tribal fisheries, as spring-run Chinook salmon are highly desirable for their fat content and have the potential to temporally expand tribal harvest opportunities beyond the current season.

Table 4.4.1-20 summarizes species-specific effects on tribal fisheries by geographic area, as follows: upper basin (Klamath Tribes), middle and lower basin excluding the Trinity River (Karuk Tribe, Yurok Tribe, Resighini Rancheria), and Trinity River (Hoopa Valley Tribe). Positive effects of any given species on the fisheries of any given tribe are relative to that tribe's recent harvest opportunities and are not necessarily equal among tribes.

Table 4.4.1-20: Effects of Dam Removal and KBRA on Tribal Harvest Opportunities, by Geographic Area

Species	Dams In	Difference between Dam Removal and Dams In
Upper Basin (Klamath Tri	ibes):	
• Chinook	No access to spring or fall Chinook	Return of salmon to upper basin would be first time in almost a century. Interim fishing site downstream of Iron Gate Dam would provide first Chinook harvest opportunity in almost a century
• Coho	ESA-listed, no access	Improved viability of Klamath Basin coho but no change in listing status
	ESA listed, ceremonial only, no subsistence use since 1986	Continued ceremonial use, potential long-term subsistence use
Redband trout	Some subsistence	Increase in abundance and distribution, greater subsistence opportunity
• Steelhead	No access	Re-introduction to upper basin
Mainstem Klamath River	- Middle and Lower Basin (Karuk Tribe, Yo	urok Tribe, Resighini Rancheria):
	Very low abundance of spring Chinook, moderate abundance of fall Chinook	Potential adverse short-term effect due to sedimentation associated with dam removal
		Approximate 50 percent increase in spring and fall Chinook after dam removal
		Spring Chinook particularly valued for high fat content and potential to extend salmon season
• Coho	ESA-listed	Improved viability of Klamath Basin coho but no change in listing status
• Steelhead	Stable/declining abundance	Potential adverse short-term effect due to sedimentation associated with dam removal
		Increased abundance and distribution after dam removal
 Pacific lamprey 	Very low abundance	One to ten percent increase in harvest potential
 Sturgeon 	Very low abundance	Limited documentation of potential effects
• Eulachon	ESA-listed	Limited documentation of potential effects
Trinity River (Hoopa Valle	ey Tribe):	
	Very low abundance of spring Chinook, moderate abundance of fall Chinook	Potential for modest adverse short-term effect due to sedimentation associated with dam removal
		No change in productivity of Trinity River salmon
		Potential reduction in incidence of fish kills downstream of confluence with Trinity
• Coho	ESA-listed	Improved viability of Klamath Basin coho but no change in listing status
• Steelhead	Stable/declining abundance	Potential for modest adverse short-term effect due to sedimentation associated with dam removal
		No change in productivity of Trinity River steelhead Potential reduction in incidence of fish kills downstream of confluence with Trinity
		that is
Pacific lamprey	Very low abundance	Little if any long-term change
	Very low abundance Very low abundance	No change

4.4.1 Economic Analysis

Table 4.4.1-21 describes how changes in subsistence harvest opportunities (as described in Table 4.4.1-20) and KBRA funding would affect tribal members' standard of living, cultural and social practices, and ability to carry out stewardship responsibilities. As indicated earlier, the return of even modest numbers of spring Chinook under the Dam Removal scenario would provide opportunity for revival of the First Salmon Ceremony; improvement in the status of sucker populations would enhance the significance of the First C'waam Ceremony for the Klamath Tribes. Effects of the Dam Removal scenario on these and other ceremonial and cultural practices are discussed more expansively in the context of all aquatic resources in Section 4.4.2 (Tribal).

Table 4.4.1-21: Effects of Dam Removal and KBRA on Standard of Living and Engagement in Resource Stewardship, by Tribe

Indicator	Dams In	Difference between Dam Removal and Dams In
Klamath Tribes:		
Standard of living	Employment provided by Klamath Tribes' Natural Resources Department supports standard of living	Increased employment and income opportunities associated with funding for fisheries and conservation management, economic development study and Mazama Forest Project (KBRA Sections 32.2, 33.1, 33.2, 34)
	Subsistence fishery for redband trout provides modest contribution to standard of living	Increased subsistence fishing opportunities would expand opportunities for trade and barter and enhance food security for tribal members (particularly important for elders)
Engagement in resource stewardship, monitoring and management	Active engagement in data collection, research, and management pertaining to aquatic resources, wildlife, and habitat	Engagement would be expanded and supported by new funding for fisheries and conservation management (KBRA section 32.2)
Land base/ fishing access sites	Limited Tribal land ownership	Mazama Forest Project (KBRA Section 33.2) would increase access to traditional lands and expand opportunities to exercise fishing rights and engage in traditional cultural practices
Karuk Tribe:		
Standard of living	Employment provided by Karuk Tribe's Natural Resources Department	Increased employment and income opportunities associated with funding for fisheries and conservation management and economic development study (KBRA Sections 32.2, 33.1, 33.2)
	Existing subsistence fisheries contribute modestly to standard of living	Increased subsistence fishing opportunities would expand opportunities for trade and barter and enhance food security for tribal members (particularly important for elders)
Engagement in resource stewardship, monitoring and management	Active engagement in data collection, research and management pertaining to fish and wildlife, water quality, and habitat	Engagement would be expanded and supported by new funding for fisheries and conservation management (KBRA section 32.2)

Table 4.4.1-21: Effects of Dam Removal and KBRA on Standard of Living and Engagement in Resource Stewardship, by Tribe

Indicator	Dams In	Difference between Dam Removal and Dams In
Yurok Tribe:	-	
Standard of living	Employment provided by Yurok Tribal Fisheries Program and participation of tribal members in commercial and guide fisheries	Increased employment and income opportunities associated with funding for fisheries and conservation management and economic development study (KBRA Sections 32.2, 33.1, 33.2) Increased harvest opportunities would provide additional employment and income for commercial and guide fisheries
	Existing subsistence fishery contributes modestly to standard of living	Increased subsistence fishing opportunities would expand opportunities for trade and barter and enhance food security for tribal members (particularly important for elders)
Engagement in resource stewardship, monitoring and management	Active engagement in data collection, research and management pertaining to fish, wildlife, habitat and fisheries	Engagement would be expanded and supported by new funding for fisheries and conservation management (KBRA section 32.2)
Resighini Rancheria:		
Standard of living	Resighini Rancheria's campground contributes modestly to standard of living	Increase in fishing opportunities may modestly increase campground usage
Engagement in resource stewardship, monitoring and management	Active engagement in stewardship of fish, wildlife, habitat and fisheries	Engagement not affected – not KBRA funding recipient
Hoopa Valley Tribe:		
Standard of living	Employment provided by Hoopa Valley Tribal Fisheries Program and participation of tribal members in commercial fishery	Little if any change in Trinity River fishing opportunities
	Existing subsistence fishery contributes modestly to standard of living	
Engagement in resource stewardship, monitoring and management	Active engagement in data collection, research and management pertaining to fish, wildlife, habitat and fisheries	Engagement not affected – not KBRA funding recipient

Benefit-Cost Analysis

The purpose of a NED BCA is to compare a proposed project's benefits to its costs. Total costs are subtracted from the total benefits to obtain net benefits. If the net benefits of a project alternative are positive, then the alternative could be considered economically justified. When multiple mutually exclusive plans are being considered, the alternative with the greatest positive net benefit would be preferred from strictly an economic perspective. Quantified project benefits and costs can also be displayed using a benefit-cost ratio (BCR) where total project benefits are divided by total project costs. A BCR greater than one

is analogous to a positive net benefit in terms of economic justification. However, if all project benefits are not quantified, it may not be possible to determine if an alternative has net benefits or if the BCR exceeds one.

This section provides estimates of those components of benefits and costs that could be readily quantified and monetized. However, it was not possible to quantitatively analyze some important benefit and cost categories.

The economic benefits associated with in-river steelhead fishing, redband trout fishing, and refuge wildlife viewing could not be quantified because sufficient data was not available to quantify these benefits. However, given that dam removal is anticipated to positively affect these activities, the net economic benefits associated with these activities are expected to be positive.

Tribal benefits are also not amenable to quantification, but for reasons other than data availability. Economic values are typically estimated using models that relate individual choice to well-defined goods and services which consumers consider in terms of price, the availability of substitutes, and their ability to pay (income). From a tribal perspective, however, resources such as fish are inseparable from other components of the ecosystem, provide individual values that are indistinguishable from communal values, are viewed as unique and not amenable to substitution at any price, and generate 'demand' that is not related to income. Therefore, models that are typically used to estimate economic values are not applicable to many tribal benefits.

For instance, from a tribal perspective, the sustainability of fisheries is indicative not only of harvest opportunity; it is emblematic of the extent to which the world is 'in balance'. Fisheries are also important for maintaining cultural and social cohesion. Thus subsistence fishing provides not only food but also the opportunity to practice and demonstrate to the younger generation important aspects of tribal culture – including fishing methods, resource stewardship, and the obligation to provide food for the elderly. Tribal ceremonies demonstrate the integral role of fish to tribal identity and honor not only the fish but also the ecosystem of which they are a part.

Even tribal commercial fishing, which provides economic benefits, is more than a commercial enterprise; during the fishing season, tribal members who live on and off the reservation gather in fish camps along the river and renew their social ties. Overall, dam removal would restore, over time, fisheries that have important cultural significance for tribes in the Basin. However, given the limited ability of standard economic methodologies to capture the expansive and integral value of fish to tribal members, it was not considered appropriate to monetize tribal resource effects.

The economic costs associated with ancillary hydropower services, real estate values, and regional powerplant emissions and air quality could not be quantified because sufficient data were not available to quantify costs in these categories. However, given the negative effects dam removal is anticipated to have on these activities, the net economic benefits associated with these activities are expected to be negative.

Table 4.1-22 describes all of the quantified and unquantified benefits and costs discussed above. Benefits and costs are characterized in terms of the change associated with Dams Out with the KBRA (partial and full facilities removal) relative to Dams In. To allow direct comparison of quantified benefits and costs, all such quantified effects are estimated in 2012 dollars and discounted back to year 2012. As indicated above, benefits and costs that are not quantified include tribal cultural values which are not amenable to quantification using standard economic methods; ancillary hydropower values; real estate values; refuge wildlife viewing values; and in river steelhead and redband trout recreation values. These unquantified benefits and costs are discussed in qualitative terms in Table 4.1-22.

Included in Table 4.4.1-22 are the nonuse values discussed previously, shown separately for individuals in the 12-county Klamath area, the rest of Oregon and California, and the rest of United States. The estimated nonuse WTP values are substantial. The WTP values are comparable to other similar studies, although the values are on the high end of the studies. To put the household annual WTP values in context, the \$122 per year value in the 12-county Klamath area represents about \$10 per month and a total of about \$2,440 over 20 years. These WTP values as expressed by respondents to the Klamath Survey are an indication of support for action to restore Klamath Basin resources. This public interest in restoring Basin resources was also reflected in the strong expressions of concern for the restoration of coho salmon (above 75 percent) and in the 54 percent of respondents who stated they favored action to restore the Basin.

The NED BCA indicates that the net economic benefits of removing the four Klamath Hydroelectric Project dams and implementing the activities identified in the KBRA are strongly positive. This implies that Full Facilities Removal of Four Dams and Partial Facilities Removal of Four Dams are justified from an economic perspective. The implication that both dam removal options are justified from an economic perspective is made in recognition that there are categories of economic benefits (in-river steelhead fishing, redband trout fishing, refuge wildlife viewing and tribal fishing and cultural values) and costs (relicensing costs, ancillary hydropower services, real estate values, and regional powerplant emissions and air quality) that could not be quantified.

Table 4.4.1-22: Estimated benefit-cost comparison of proposed scenarios (discounted present values, Million \$, 2012 dollars)

	Full Facilities Removal	Partial Facilities Removal
	(\$M, 2012 dollars, incremental changes from the Dams In scenario)	
Total Quantified Benefits ¹ :		•
Low estimate	15,868.3	15,868.3
High estimate	84,435.4	84,435.4
Irrigated agriculture	29.9	29.9
Commercial fishing	134.5	134.5
Ocean sport fishing	52.8	52.8
In-river salmon sport fishing	1.8	1.8
Refuge waterfowl hunting	4.3	4.3
Nonuse values ²		
12-county Klamath area	67.0	67.0
Total nonuse value Total economic value	67.0 217.0	67.0 217.0
Total Continue value	217.0	217.0
Rest of OR/CA		
Total nonuse value	2,091.0	2,091.0
Total economic value	9,071.0	9,071.0
Rest of the U.S.		
Total nonuse value	13,487.0	13,487.0
Total economic value	74,983.0	74,983.0
Unquantified Benefits:		
Tribal commercial fisheries	Insufficient data available to quantify these benefits. However, or removal is anticipated to positively affect tribal commercial fisheries dependent resources.	
Tribal cultural values (including ceremonial and subsistence uses)	s) Applying a traditional economic framework to monetize tribal cultural values was not considered to be appropriate. However, dam removal is anticipated to positively affect tribal cultural valu	
In-river steelhead and redband trout sport fishing	Insufficient data available to quantify these benefits. Given that dam removal is anticipated to positively affect these in-river fisheries, the net economic benefits would also be positive.	
Refuge wildlife viewing	Insufficient data available to quantify these benefits. Given that dam removal is anticipated to positively affect refuge recreation the net economic benefits associated with refuge wildlife viewin would also be positive.	
Total Quantified Costs:		
High Estimate Low Estimate	1,813.6 1,772.1	1,787.9 1,746.4
KBRA restoration	474.1	474.1
Facilities removal	129.1	98.0
Site mitigation	37.7	36.6
OM&R (cost savings)	-188.9	-182.4
High Estimate Low Estimate KBRA restoration Facilities removal Site mitigation	1,813.6 1,772.1 474.1 129.1 37.7	1,746.4 474.1 98.0 36.6

Table 4.4.1-22: Estimated benefit-cost comparison of proposed scenarios (discounted present values, Million \$, 2012 dollars)

	Full Facilities Removal	Partial Facilities Removal
	(\$M, 2012 dollars, incremental changes from the Dams In scenario)	
Unquantified Costs:		
Real estate values	Insufficient data available to quant The extent to which these changes depends on the magnitude of prop for lands proximate to the reservoi including real estate values would some of the benefit and cost categ	are positive or negative perty value changes, over time, irs and to the restored river. Also, likely result in double counting in
Hydropower ancillary services (ancillary services support the transmission of electricity from its generation site to the customer; may include load regulation, spinning reserve, non-spinning reserve, replacement reserve and voltage support)	Explicit consideration of ancillary services is outside the scope of this analysis. If these plants produce any ancillary services, their consideration could be expected to increase the foregone economic benefits reported here.	
Regional powerplant emissions	The analysis does not fully consider hydropower production levels on semissions or regional air quality.	, ,,
Net Economic Benefits ³ Low estimate (Low benefit estimate minus high cost estimate: these estimates are based on nonuse value including recreation use benefits and forgone recreation use values)	14,054.7	14,080.4
High estimate (High benefit estimate minus low cost estimate: these estimates are based on total economic value adjusted by removing recreation use benefits and forgone recreation use values)	82,663.3	82,689.0
Benefit-Cost Ratio ⁴ Low estimate (Low Benefit Estimate divided by High Cost Estimate: these estimates are based on nonuse value including recreation use benefits and forgone recreation use values)	8.7 to 1	8.9 to 1
High estimate (High Benefit Estimate divided by Low Cost Estimate: these estimates are based on total economic value adjusted by removing recreation use benefits and forgone recreation use values)	47.6 to 1	48.3 to 1

The Klamath nonuse valuation survey provided an estimate of total economic value, which included both use and nonuse values. The low and high estimates of total quantified benefits provided in this table reflect two different methods of characterizing the nonuse component of total value. The low estimate is based on the average household WTP associated solely with reducing the extinction risk of coho salmon from high to moderate, as estimated using survey data. Although the extinction risk for coho salmon would improve under the action plans, those plans do not indicate a prospect for delisting of coho. This indicates there would be very little possibility of any use values (e.g., recreational fishing) associated with this species in the foreseeable future under the action plans. As such, this value can be viewed as a conservative estimate of nonuse value because it does not also include any nonuse values associated with reduction in extinction risks for suckers, population improvements for Chinook salmon and steelhead trout, dam removal, the water-sharing agreement, and fish restoration projects (i.e., the other components of the minimal Action plan). The high estimate is based on the survey estimate of total economic value, but excludes the separate estimates of recreation use values presented in the benefits cells of this table to avoid double counting.

² The Klamath nonuse valuation survey provided an estimate of total economic value which includes both use and nonuse value. The nonuse value presented represents the average household WTP, aggregated for each stratum, associated solely with reducing the extinction risk of the coho salmon from high to moderate. The estimates of total economic value should not be added to the estimates of use values presented in this table to avoid double counting.

Low and high estimates of net economic benefits are presented because the Klamath nonuse valuation survey provided an estimate of total economic value which included both use and nonuse values. The low estimate reflects the average household WTP associated solely with reducing the extinction risk of the coho salmon from high to moderate. The high estimate is based on the survey estimate of total economic value, but excludes the separate estimates of recreation use values presented in both the benefits and costs cells of this table to avoid double counting.

⁴ The net benefits and benefit-cost ratio reflect only those benefits and costs that could be quantified. Nonquantifiable benefits and costs should also be considered in weighing the merits of the plans.

Figure 4.4.1-2: Economic Regions for Regional Economic Benefits

4.4.1.2 Regional Economic Development

The RED account measures the effect of leaving the dams in place and facilities removal on the region's local economy. This analysis describes potential regional economic impacts associated with implementation of facilities removal.

The economic regions vary somewhat, depending on the affected activity, but generally include Del Norte, Humboldt, Modoc, and Siskiyou counties in California and Curry, Klamath, and Jackson counties in Oregon. The Four Facilities are in Siskiyou and Klamath counties. The remaining counties have local economies linked to the Klamath River through fishing, recreation/tourism, or agriculture industries. Commercial fishing effects can be more far-reaching than the Klamath Basin and include Mendocino, Sonoma, Marin, San Francisco, and San Mateo counties in California and Lane, Douglas, and Coos counties in Oregon.

In general, the counties in the area of analysis are in rural areas of the states and have resource- and environmental amenity-based economies (e.g., timber, agriculture, fishing, recreation). Like many rural areas, the counties have lower population densities, lower incomes, less economic output and fewer employment opportunities

than counties with larger urban centers in California and Oregon. Services and government entities are typically the largest employers in the counties. Figure 4.4.1-3 shows employment, labor income, and output by industry in a combined regional economy for Siskiyou and Klamath counties. Various economic regions were developed for the economic analysis, based on the geographic location where the direct economic activity would likely occur. In general, the industry make up is similar to Siskiyou and Klamath counties, shown in the pie chart.

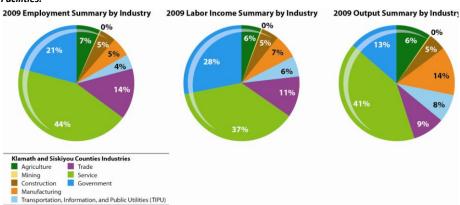


Figure 4.4.1-3: 2009 Regional economy for Siskiyou and Klamath counties, the location of the Four Facilities.

The modeling package used to assess the regional economic impacts from the expenditures associated with leaving the dams in place and facilities removal was IMPLAN (IMpact analysis for PLANning) Version 3 with 2009 county data sets.

IMPLAN is a static model that estimates impacts for a snapshot in time when the impacts are expected to occur, based on the makeup of the economy at the time of the underlying IMPLAN data. IMPLAN measures the initial impact to the economy but does not consider long-term adjustments as labor and capital move into alternative uses. This approach is used to compare the scenarios. Realistically, the structure of the economy will adapt and change; therefore, the IMPLAN results can only be used to compare relative changes between the Dams Out and Dams In scenarios and cannot be used to predict or forecast future employment, labor income, or output (sales).

Input-output models measure commodity flows from producers to intermediate and final consumers. Purchases for final use (final demand) drive the model. Industries produce goods and services for final demand and purchase goods and services from other producers. These other producers, in turn, purchase goods and services. This buying of goods and services (indirect purchases) continues until leakages from the analysis area (imports and value added) stop the cycle. These indirect and induced effects (the effects of household spending) can be mathematically derived using a set of multipliers. The multipliers describe the change in output for each regional industry caused by a 1-dollar change in final demand.

Regional economic total effects are presented in terms of employment, labor income, or output. IMPLAN defines these parameters as follows:

- **Employment** Number of jobs; a job can be full-time or part-time. Jobs can be short-term or long-term depending on the economic impact.
- Labor Income All forms of employment income; including employee compensation (wages and benefits) and proprietor income.
- **Output** Value of industry production; in IMPLAN these are annual production estimates for the year of the data set.

IMPLAN is used to estimate regional economic impacts of facilities removal, and changes to commercial fishing, reservoir recreation, ocean and in-river sport fishing, and white water boating as a result of dam removal. The analysis also uses IMPLAN to estimate regional economic impacts of the KBRA, including effects to irrigated agriculture, refuge recreation, and implementation of fisheries, water resources, regulatory assurances, tribal and county programs.

Facilities Removal

Facilities removal has three components: dam decommissioning, annual operation and maintenance, and mitigation activities associated with dam removal would increase economic output, employment, and labor income in Klamath and Siskiyou counties. Effects from dam decommissioning expenditures

IMPLAN

Impact Analysis for Planning, or IMPLAN, is an economic input-output modeling system that estimates the effects of economic changes in a defined area of analysis.

The total effects are the total changes to the original economy as the result of a project, or Direct effects + Indirect effects + Induced effects = Total Effects.

Direct effects – Initial economic activities (jobs and income) generated by a project. Direct effects are the inputs into IMPLAN.

Indirect Effects – Changes in production, employment, and income occurring in other industries that provide inputs (such as supplies) to the project.

Induced Effects - Changes in household spending in the local economy from direct and indirect effects of a project (e.g., people employed by a project spending their newly earned income in their local community).

IMPLAN is a static model that estimates impacts for a snapshot in time when the impacts are expected to occur, based on the makeup of the economy at the time of the underlying IMPLAN data.

IMPLAN measures the initial impact but does not consider long-term adjustments as labor and capital move into alternative uses. The structure of an economy will adapt and change; therefore, the IMPLAN results can only be used to compare relative changes between scenarios; it cannot be used to predict or forecast future employment, labor, or output (sales).

This analysis uses 2009 IMPLAN data for the counties in the area of analysis, compiled from various sources including U.S. Bureau of Economic Analysis, U.S. Bureau of Labor, and U.S. Census Bureau.

would occur for one year in 2020. In 2012 dollars, the costs for full facilities removal would be \$178.4 million. Not all dollars would be spent within the region. Approximately \$114.3 million of \$178.4 million (2012 dollars) would be spent in Klamath and Siskiyou counties. Partial facilities removal is estimated to cost \$135.4 million (2012 dollars) (Reclamation 2011a). Expenditures associated with partial facilities removal spent within the region were estimated to be \$84.68 million (2012 dollars) (Reclamation 2011a). These expenditures are part of the output impacts of dam decommissioning as shown is Table 4.4.1-1.

As described in the NED analysis, dam removal would reduce annual Operation and Maintenance (O&M) costs for the Klamath Hydroelectric Project. As a result, there would be a decrease in expenditures in the region with facilities removal relative to leaving the dams in place.

Mitigation spending could increase economic output, employment, and labor income in the regional economy. The regional impacts associated with mitigation would be spread over the 2018 to 2025 period and would vary year by year, proportionate to actual expenditures. Not all mitigation dollars would be spent within the region. Klamath County has highway, street, and bridge construction companies that provide asphalt and asphalt products for road construction. Siskiyou and Klamath counties also have county road crews. Much of the roadwork could be done by local workers and businesses. Local workers could also provide much of the replanting and habitat restoration required for mitigation.

Table 4.4.1-23 shows regional economic impacts of in-region spending for full and partial facilities removal relative to leaving the dams in place. Only in-region expenditures would generate positive regional economic effects. Most economic effects would be in the sector where the direct impact occurs. For dam deconstruction expenditures, this analysis assumes direct effects would mostly occur in the construction sector. Employment created in this sector would be full and part time jobs and would include contractors and subcontractors directly engaged in construction operations (such as equipment operators, drillers, carpenters, electricians, mechanics, apprentices, skilled and unskilled laborers, truck drivers, on-site record keepers and security guards), and any of their related office or administrative staff. After construction and mitigation activities are complete, output, employment, and labor incomes within the region would generally return to levels prior to construction.

Table 4.4.1-23: Regional Economic Impacts from Dam Decommissioning Expenditures with Facilities Removal Relative to the Dams In (2012 dollars)

			Total Impact⁴	
		Dams In	Full Facilities Removal Relative to Dams In	Partial Facilities Removal Relative to Dams In
Dam	Employment (Jobs) ¹	None	1,423	1,138
Decommissioning	Labor Income (\$ millions) ²	None	59.70	48.11
	Output (\$ millions) ³	None	163.32	131.84
Operation and	Employment ¹ (Jobs)	49	-49	-47.4
Maintenance	Labor Income ^{2 (} \$ millions)	2.05	-2.05	-1.98
	Output ^{3 (} \$ millions)	5	-5	-5
Mitigation	Employment ¹ (Jobs)	none	217	Same as Full Removal
	Labor Income ^{2 (} \$ millions)	none	10.01	Same as Full Removal
	Output ^{3 (} \$ millions)	none	30.86	Same as Full Removal

Source: Reclamation 2011a

Commercial Fishing

The five management areas where the commercial fishery is most likely to experience economic impacts are depicted in Figure 4.4.1-4. Figure 4.4.1-5 presents average ocean commercial fishing harvest data from 1981 through 2010, with yearly data for the 2001–2010 period. Removal of the Four Facilities with KBRA would restore a more natural Klamath River flow regime and improve and expand spawning and rearing habitat for salmon on the Klamath River, which would benefit salmon populations. Commercial fishing landings would increase because of increased salmon abundance, which would increase fishing revenues. Table 4.4.1-24 shows how revenue would be affected by Dams Out relative to Dams In for each management area. Partial facilities removal would have the same total impact as full facilities removal.

Table 4.4.1-24: Annual Ex-Vessel Revenue for Most Impacted Management Areas with Dams Out Relative to the Dams In (2012 Dollars)

Management Area	Dams In - Revenue	Dam Removal - Revenue	Dam Removal - Change in Revenue Relative to Dams In
Central Oregon	6,847,058	9,775,879	2,928,821
KMZ OR	266,894	381,058	114,164
KMZ CA	328,574	469,121	140,547
Fort Bragg	4,202,992	6,000,817	1,797,825
San Francisco	9,125,553	13,028,998	3,903,445

Source: Reclamation 2011a

Note: KMZ = Klamath Management Zone.

Figure 4.4.1-4: Commercial fishery management areas included in the analysis

¹ Employment is measured in number of jobs. Construction-related employment estimates include the in-field workforce plus all additional jobs generated by project construction expenditures, e.g., in retail, services, manufacturing, and other related sectors throughout the economy.

² Income is the dollar value of total payroll (including benefits) for each industry in the analysis area plus income received by self-employed individuals located within the analysis area.

³ Output represents the dollar value of industry production

⁴ Total Impact = Direct + Indirect + Induced Impacts

Figure 4.4.1-5: Recent ocean commercial fishing in the area of analysis.

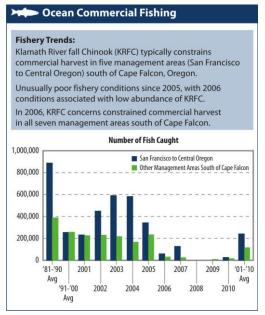


Table 4.4.1-25 summarizes annual regional economic impacts to ocean commercial fishing under the Dams In scenario and the change in these impacts that would occur under Dams Out. Most employment, labor income, and output effects would occur in the natural resources sector (which includes the fishery sector) of the regional economy. Employment created in this sector could be full time or part time and include various types of services, such as fishing, provision of fuel, bait, and ice, and other supporting jobs. Partial facilities removal would have the same total impact on employment, labor income, and output as full facilities removal.

Table 4.4.1-25: Annual Regional Economic Impacts from Commercial Fishing with Facilities out Removal and KBRA Relative to the Dams In (2012 Dollars)

		Total Impact		
		Dams In	Dam Removal - Incremental Impacts Relative to Dams In	
Central Oregon	Employment (Jobs)	319	136	
	Labor Income (\$ millions)	4.15	1.74	
	Output (\$ millions)	9.55	4.07	
KMZ California	Employment (Jobs)		19	
	Labor Income (\$ millions)	0.19	0.07	
	Output (\$ millions)	0.45	0.19	
KMZ California	Employment (Jobs)		19	
	Labor Income (\$ millions)	0.19	0.07	
	Output (\$ millions)	0.45	0.19	
Fort Bragg	Employment (Jobs)	162	69	
	Labor Income (\$ millions)	2.45	1.05	
	Output (\$ millions)	5.62	2.41	
San Francisco	Employment (Jobs)	510	218	
	Labor Income (\$ millions)	6.1	2.56	
	Output (\$ millions)	15.52	6.6	

Source: Reclamation 2011a

Note: KMZ = Klamath Management Zone.

4.4.1.3 Reservoir Recreation

The economic region used in the reservoir recreation regional economic impact analysis is based on the location of the affected reservoirs. Recreation activity occurs at J.C. Boyle, Copco 1, and Iron Gate reservoirs, Copco 2 Reservoir does not generate recreation activity. Therefore, the reservoir recreation regional analysis focuses exclusively on J.C. Boyle Reservoir, which is in Klamath County, Oregon, and Copco 1 and Iron Gate reservoirs, which are in Siskiyou County, California.

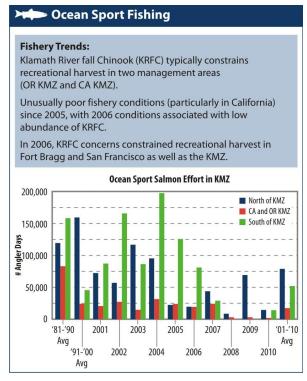

Figure 4.4.1-6 describes recent reservoir-based recreational activity and expenditures per visitor day, and the distances to other lakes and reservoirs in the region that could be utilized following removal of J.C. Boyle, Copco 1 and Iron Gate reservoirs. An average annual reduction of 40,901 visits (Reclamation 2011I) would occur if the reservoirs were removed. This would result in a reduction in average annual expenditures of \$627,838. Table 4.4.1-26 compares annual regional economic impacts with the dams remaining in place and the decrease in such impacts that would occur under facilities removal. Most employment, labor income, and output effects would occur in the services sector. Employment affected in this sector could be full time or part time. Partial facilities removal would have the same total impact on employment, labor income, and output as full facilities removal.

Table 4.4.1-26: Annual Regional Economic Impacts from Reservoir Recreation with Facilities Removal Relative to the Dams In (2012 dollars)

		Total Impact ⁴		
	Dams In Dam Removal Relative to Dams In			
Employment ¹ (Jobs) Labor Income ² (\$ millions)	7	-4		
Labor Income ² (\$ millions)	0.22	-0.13		
Output ³ (\$ millions)	0.54	-0.31		

Source: Reclamation 2011a

Figure 4.4.1-6: Reservoir based recreation occurs in the region.


Employment is measured in number of jobs. Construction-related employment estimates include the infield workforce plus all additional jobs generated by project construction expenditures, e.g., in retail, services, manufacturing, and other related sectors throughout the economy.

Income is the dollar value of total payroll (including benefits) for each industry in the analysis area plus income received by self-employed individuals located within the analysis area.

³ Output represents the dollar value of industry production

⁴ Total Impact = Direct + Indirect + Induced Impacts

Figure 4.4.1-7: Ocean sport fishing contributes to the regional economy.

4.4.1.4 Ocean Sport Fishing

The areas of analysis for ocean sport fishing includes KMZ California (Humboldt and Del Norte counties) and KMZ Oregon (Curry County), because Klamath River salmon availability are the constraining stock for this areas. Figure 4.4.1-7 describes recent ocean sport fishing activity and expenditures per angler day.

Table 4.4.1-27 summarizes annual regional economic impacts of ocean sport fishing in the KMZ under the Dams In scenario and the change in such impacts that would occur under Dams Out. Partial facilities removal would have the same total impact on employment, labor income and output as full facilities removal. Most employment, labor income, and output effects associated with ocean sport fishing would occur in the services sector. Employment created in this sector could be full time or part time.

Table 4.4.1-27: Annual Regional Economic Impacts from Ocean Sport Salmon Fishing with Facilities Removal Relative to the Dams In (2012 dollars)

	<u>Total Impact⁴</u>			
	Dams In		Dam Removal Relative to <u>Dams In</u>	
	KMZ - California	KMZ - Oregon	KMZ – California	KMZ - Oregon
Employment ¹ (Jobs)	13	3	5.5	1.2
Labor Income ² (\$ millions)	0.42	0.08	0.18	0.02
Output ³ (\$ millions)	1.12	0.21	0.48	0.09

Source: Reclamation 2011a

¹ Employment is measured in number of jobs. Construction-related employment estimates include the in-field workforce plus all additional jobs generated by project construction expenditures, e.g., in retail, services, manufacturing, and other related sectors throughout the economy.

² Income is the dollar value of total payroll (including benefits) for each industry in the analysis area plus income received by self-employed individuals located within the analysis area.

³ Output represents the dollar value of industry production

⁴Total Impact = Direct + Indirect + Induced Impacts

4.4.1.5 In-River Sport Fishing

The economic region used in the regional economic impact analysis for in-river recreational fisheries includes Del Norte, Humboldt and Siskiyou counties in California and Klamath County in Oregon. Annual in-river salmon angler trips from 2001 through 2010 are presented in Figure 4.4.1-8. Annual salmon fishing effort on the Klamath River is estimated at 26,578 angler days with facilities removal. The portion of this effort attributable to nonresident anglers is 17,036 angler days. Expenditures in the region by nonresident anglers are estimated at \$1.789 million (2012 dollars). The annual increase in nonresident expenditures with facilities removal relative to the dams remaining in place would be \$127,000. Table 4.4.1-28 summarizes annual regional economic activity with the dams in place and the increase in such activity that would be supported by facilities removal (Reclamation 2011a, NOAA Fisheries Service 2011c). Most employment, labor income, and output effects associated with inriver sport fishing would occur in the services sector. Employment created in this sector could be full time or part time.

Some information on recent steelhead and redband trout fishing activity is available (see Figure 4.4.1-8). Facility removal would result in increased abundance of these two species; however, the economic impacts of these changes could not be quantified. It is likely that these changes would generate additional expenditures, jobs, labor income, and output in the regional economy. Partial facilities removal would have the same total impact on employment, labor income and output as full facilities removal.

Figure 4.4.1-8: In-river sport fishing angler days and expenditures.

In-River Sport Fishing

Salmon anglers from outside region spend \$105 per angler per day (NOAA Fisheries Services 2004)

An average of 17,155 angler trips for steelhead occurred on Klamath River from 2003-2008

About 15,200 angler trips for redband trout occurred in Upper Klamath Lake and Agency Lake from March - September 2009

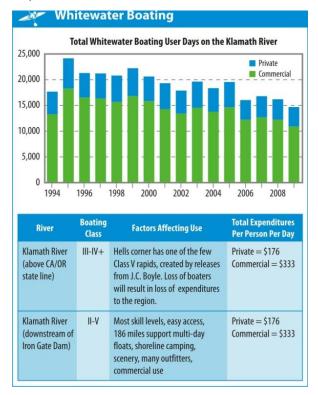
Estimated Number of Recreational Salmon Angler Days and Chinook Harvest on the Klamath River, 2001-2010

Year	Number of Angler Days	Chinook Harvest (fish)
2001	28,251	2,904
2002	24,993	4,942
2003	23,259	10,986
2004	24,751	10,420
2005	17,789	7,911
2006	12,141	5,756
2007	19,597	1,941
2008	15,249	5,259
2009	20,755	5,232
2010	16,219	5,599
01-05 Average	23,809	7,403
06-10 Average	16,792	5,425

Table 4.4.1-28: Annual Regional Economic Impacts from In-River Sport Salmon Fishing with Facilities Removal Relative to the Dams In (2012 dollars)

		(=====)	
_	Total Impact⁴		
	Dams In	Dam Removal Relative to Dams In	
Employment ¹ (Jobs) Labor Income ² (\$ millions)	34	3	
	0.93	0.07	
Output ^{3 (} \$ millions)	2.01	0.15	

Source: Reclamation 2011a


¹ Employment is measured in number of jobs. Construction-related employment estimates include the in-field workforce plus all additional jobs generated by project construction expenditures, e.g., in retail, services, manufacturing, and other related sectors throughout the economy.

² Income is the dollar value of total payroll (including benefits) for each industry in the analysis area plus income received by self-employed individuals located within the analysis area.

³ Output represents the dollar value of industry production

⁴Total Impact = Direct + Indirect + Induced Impacts

Figure 4.4.1-9: Whitewater boating user days and expenditures.

4.4.1.6 Whitewater Boating

The regional economic impact analysis region for whitewater boating is Klamath and Jackson counties in Oregon and Humboldt and Siskiyou counties in California. Figure 4.4.1-9 presents a historical record of annual whitewater boating user-days from 1994 through 2009 and estimates of expenditures per user-day. Facilities removal would result in loss of whitewater boating activity on the upper Klamath River (primarily the Hell's Corner Reach). Hell's Corner Reach is located below J.C. Boyle Dam. Daily "peaking" releases from this dam create predictable class V rapids during the daytime hours; class V rapids are rare in the area. Removal of J.C. Boyle Dam would eliminate "peaking" in this reach, making Hell's Corner less desirable for whitewater boating. Annual losses would begin in 2020 with the removal of J.C. Boyle Dam. The difference in average annual user-days between facilities removal and the dams remaining in place was estimated at 2,763. The difference in average annual lost expenditures between facilities removal and the dams remaining in place was estimated as \$715,903 (DOI 2011d). Table 4.4.1-29 summarizes annual regional economic impacts with dams in place and the decrease in such impacts that would occur with facilities removal. Most employment, labor income, and output effects associated with whitewater boating would occur in the services sector. Employment created in this sector could be full time or part time. Partial facilities removal would have the same total impact on employment, labor income, and output as full facilities removal.

Table 4.4.1-29: Annual Regional Economic Impacts from Whitewater Boating with Facilities Removal Relative to the Dams In (2012 dollars)

	Total Impact⁴		
	Dams In	Dam Removal Relative to Dams In	
Employment ¹ (Jobs)	56	-14	
Labor Income ² (\$ millions)	\$1.56	-0.43	
Output ³ (\$ millions)	\$4.31	-0.89	

Source: Reclamation 2011a

¹ Employment is measured in number of jobs. Construction-related employment estimates include the in-field workforce plus all additional jobs generated by project construction expenditures, e.g., in retail, services, manufacturing, and other related sectors throughout the economy.

² Income is the dollar value of total payroll (including benefits) for each industry in the analysis area plus income received by self-employed individuals located within the analysis area.

³ Output represents the dollar value of industry production

⁴Total Impact = Direct + Indirect + Induced Impacts

4.4.1.7 KBRA

Implementation of the KBRA would result in substantial spending in the Klamath Basin over a 15-year period. Effects are analyzed for two economic regions, a 4-county region of Klamath, Siskiyou, Humboldt, and Del Norte counties, and a 3-county region of Klamath, Siskiyou, and Modoc counties. The KBRA identifies up to 112 projects that include restoration, reintroduction, and monitoring projects, water resource programs, regulatory programs, and funding to local counties and Indian tribes. This analysis estimates the regional economic impacts of implementing the KBRA. The KBRA would be implemented under full facilities removal and partial facilities removal; therefore, the KBRA impacts would be the same for both. Some actions were analyzed in the 3 county region and some in the 4 county region depending on where the action would occur.

Fisheries Program

The KBRA includes fishery restoration, reintroduction and monitoring actions in the upper and lower basin. Actions would be implemented in the 4-county region. Restoration activities would involve some degree of construction including floodplain rehabilitation, large woody debris placement/replacement, fish passage correction, cattle exclusion fencing, and riparian vegetation planting. It is likely that much of the construction could be done by local construction workers from the region. The KBRA also calls for construction of new fish facilities, which may require more out-of-region contractors. KBRA actions would provide new jobs and increase labor income within the region during the implementation period. Table 4.4.1-30 summarizes regional economic effects from implementation of the Fishery Program actions under the KBRA. These effects are incremental to base funding that would be expended without the KBRA. Effects are based on funding levels identified by Federal agencies in a revised Table C-2 of the KBRA. Effects would occur over the KBRA implementation period (2012–2026) and would vary year by year, proportionate to actual expenditures. Some actions would be completed in less than 15 years.

Table 4.4.1-30: Regional Economic Impacts of KBRA Fishery Program Actions Relative to Base Funding Over a 15-year period (2012 dollars)

KBRA		15 Year KBRA In-Region	Total Impact of KBRA Funding (not including base funding) ¹			
Table C-2 Line #	KBRA Action	Spending (1,000 dollars)	Employment (Jobs) ²	Labor Income (1,000 dollars) ³	Output (1,000 dollars)	
1	Coordination and Oversight	\$117	3	\$90	\$142	
	Planning & ImplementationPhase I and II Restoration					
2	Plans	\$1,211	20	\$918	\$1,456	
3	Williamson River aquatic habitat restoration	\$890	12	\$568	\$1,258	
4	Sprague River aquatic habitat restoration	\$41,994	546	\$26,206	\$60,228	
5	Wood River Valley aquatic habitat restoration	\$10,777	136	\$6,476	\$15,892	
6	Williamson Sprague Wood Screening Diversion	\$2,232	28	\$1,334	\$3,306	
7	Williamson & Sprague USFS uplands	\$4,886	64	\$3,049	\$7,007	
8	Upper Klamath Lake aquatic habitat restoration	\$10,785	134	\$6,365	\$16,10	
9	Screening of UKL pumps	\$425	6	\$255	\$632	
10	UKL watershed USFS uplands	\$1,641	23	\$1,024	\$2,354	
	Keno Impoundment water quality studies &					
11	remediation actions	\$29,647	366	\$17,443	\$44,36	
12	Keno Impoundment wetlands restoration	\$1,008	13	\$594	\$1,508	
13	Keno to Iron Gate upland private & BLM	\$0	0	\$0	\$0	
14	Keno to Iron Gate upland USFS	\$713	10	\$440	\$1,036	
15	Keno to Iron Gate mainstem restoration	\$951	13	\$620	\$1,321	
16	Keno to Iron Gate tributaries - diversions & riparian	\$1,141	16	\$744	\$1,585	
17	Shasta River aquatic habitat restoration	\$0	0	\$0	\$0	
18	Shasta River USFS uplands	\$0	0	\$0	\$0	
19	Scott River aquatic habitat restoration	\$0	0	\$0	\$0	
20	Scott River USFS uplands	\$460	6	\$284	\$668	
21	Scott River private uplands	\$0	0	\$0	\$0	
	Mid Klamath River & tributaries aquatic habitat					
22	restoration	\$0	0	\$0	\$0	
23	Mid Klamath tributaries USFS upland	\$4,574	59	\$2,815	\$6,631	
24	Mid Klamath tributaries private upland	\$1,887	25	\$1,162	\$2,736	
	Lower Klamath River & tributaries aquatic habitat					
25	restoration	\$0	0	\$0	\$0	
26	Lower Klamath private uplands	\$25,428	326	\$15,641	\$36,86	
27	Salmon River aquatic habitat restoration	\$1,959	26	\$1,206	\$2,840	
28	Salmon River USFS upland	\$2,701	35	\$1,662	\$3,916	
29	Reintroduction Plan	\$1,631	26	\$1,236	\$1,960	
30	Collection Facility	\$6,014	78	\$3,700	\$8,719	
31	Production Facility	\$6,113	79	\$3,762	\$8,865	
32	Acclimation Facility	\$4,709	61	\$2,898	\$6,827	
33	Transport	\$826	13	\$627	\$994	
34	Monitoring and Evaluation – Oregon	\$29,828	461	\$22,601	\$35,82	
35	Monitoring and Evaluation – California	\$2,995	47	\$2,270	\$3,599	
36	New Hatchery	\$5,546	72	\$3,412	\$8,041	
37	Adult Salmonids	\$9,952	154	\$7,542	\$11,95	
38	Juvenile Salmonids	\$14,630	227	\$11,086	\$17,57	
39	Genetics Otololith	\$0	0	\$0	\$0	
40	Hatchery Tagging	\$0	0	\$0	\$0	
41	Disease	\$5,214	82	\$3,952	\$6,264	
42	Green Sturgeon	\$0	0	\$0	\$0	
43	Lamprey	\$1,837	29	\$1,393	\$2,208	
44	Geomorphology	\$1,608	26	\$1,219	\$1,933	
45	Habitat Monitoring	\$2,641	42	\$2,002	\$3,173	
46	Water Quality	\$86	2	\$65	\$110	
47	UKL bloom dynamics	\$0	0	\$0 \$0	\$0	
48	UKL water quality/phytoplankton/zooplankton	\$4,143	68	\$3,153	\$5,324	
		\$1,244	21	\$947	\$1,599	

Table 4.4.1-30: Regional Economic Impacts of KBRA Fishery Program Actions Relative to Base Funding Over a 15-year period (2012 dollars)

KBRA		15 Year KBRA In-Region	Total Impact of KBRA Funding (not including base funding) ¹			
Table C-2 Line #	KBRA Action	Spending (1,000 dollars)	Employment (Jobs) ²	Labor Income (1,000 dollars) ³	Output (1,000 dollars) ⁴	
50	UKL external nutrient loading	\$3,881	64	\$2,952	\$4,985	
51	UKL analysis of long-term data sets	\$652	11	\$497	\$838	
52	UKL listed suckers	\$4,331	71	\$3,294	\$5,564	
53	Tributaries water quality/nutrients/sediment	\$4,718	77	\$3,589	\$6,061	
54	Tributaries geomorphology/riparian vegetation	\$3,637	60	\$2,767	\$4,672	
55	Tributaries physical habitat	\$3,241	53	\$2,466	\$4,164	
56	Tributaries listed suckers	\$4,777	77	\$3,634	\$6,136	
57	Keno Impoundment water quality/algae/nutrients	\$6,048	99	\$4,601	\$7,770	
58	Keno Impoundment to Tributaries: Meteorology (weather stations)	\$3,044	50	\$2,316	\$3,911	
59	Remote Sensing acquisition and analysis		No in-region speeconomic effect	ο, ο	onal	

Source: CDM 2011b

IMPLAN results presented in 2012 dollars

UKL: Upper Klamath Lake

USFS: United States Forest Service

BLM: Bureau of Land Management

Water Resource Program

The KBRA includes water resource actions to improve water supply reliability in Reclamation's Klamath Project. Actions include monitoring, analysis, restoration, and construction. Actions affecting agriculture or refuges would occur in the 3-county region, while restoration-related water resources actions would occur in the 4-county region. It is likely that much of the construction could be done by local construction workers from the region. State and local government workers in the region would likely implement many actions, including monitoring, analysis, and administration. KBRA actions would provide new jobs and increase labor income within the region during the implementation period. Table 4.4.1-31 summarizes regional economic effects from implementation of the Water Resources Program actions under the KBRA relative to the KBRA not being implemented. Some actions could change Klamath Project hydrology and have direct effects on irrigated agriculture or refuge recreation; these programs are evaluated separately following this section.

¹ Total Impact = Direct + Indirect + Induced Impacts

² Employment is measured in number of jobs. Construction-related employment estimates include the in-field workforce plus all additional jobs generated by project construction expenditures, e.g., in retail, services, manufacturing, and other related sectors throughout the economy.

³ Income is the dollar value of total payroll (including benefits) for each industry in the analysis area plus income received by self-employed individuals located within the analysis area.

⁴ Output represents the dollar value of industry production.

Table 4.4.1-31: Regional Economic Impacts of KBRA Water Resource Program Actions Relative to Base Funding over a 15-year period (2012 dollars)

KBRA				pact ¹ of KBRA Fundi cluding base funding	
Table C-2 Line #	KBRA Action	15 Year KBRA In Region Spending	Employment (Jobs) ²	Labor Income (1,000 dollars) ³	Output (1,000 dollars) ⁴
60	Keno Dam fish passage		No in-region spendir	ng, no regional econo	omic effects
61	Data Analysis and evaluation	\$168	3	\$126	\$197
62	Development of predictive techniques	\$391	7	\$298	\$471
	Klamath Basin Wildlife Refuges: O&M North and P				
63	Canals		No funding identified	d in Revised C2	
	Klamath Basin Wildlife Refuges: Walking Wetland				
64	Construction	\$2,500	40	\$1,955	\$3,799
	Klamath Basin Wildlife Refuges: Big Pond Dike				
65	Construction		No funding identified	d in Revised C2	
66	On Project water plan		Evaluated in Irrigate	d Agriculture Technic	cal Report
67	Groundwater Technical Investigation		No in-region spendir	ng, no regional econo	omic effects
68	Costs Associated with Remedy for Adverse Impact		No funding identified	d in Revised C2	
69	D Pumping Plant		Transfer of funds, no regional economic effects		
70	Water Use Retirement Plan	\$0	Evaluated in Irrigate	d Agriculture Technic	cal Report
	Off Project Plan and Program: Use of 30,000 ac ft			<u> </u>	
71	upstream of Upper Klamath Lake	\$0	Evaluated in Irrigated Agriculture Technical Report		
72	Interim Power Sustainability	\$0	Evaluated in Irrigated Agriculture Technical Report		
73	Federal Power		Transfer of funds, no regional economic effects		
74	Energy Efficiency and Renewable Resources	\$4,402	54	\$2,278	\$6,211
	Renewable Power Program Financial and Engineering	. ,		. ,	. ,
75	Plan		No in-region spendir	ng, no regional econo	mic effects
76	UKL Wetlands Restoration: Agency/Barnes	\$2,717	34	\$1,576	\$4,108
77	UKL Wetlands Restoration: Wood River	\$2,717	34 \$1,576		\$4,108
78	Drought Plan Development		No funding identified in Revised C2		, ,
79	Drought Plan Restoration Agreement Fund		Evaluated in Irrigate		cal Report
80	Emergency Response Plan		No funding identified		
81	Emergency Response Fund		No funding identified		
82	Technical Assessment of Climate Change		No in-region spendir		omic effects
83	Off-Project Reliance Program		Evaluated in Irrigate		
84	Real Time Water Management		No funding identified		
	Real Time Water Management: Water Flow Monitoring				
85	and Gauges	\$3,239	51	\$2,455	\$3,892
86	Snowpack Gauges		No funding identified	d in Revised C2	ψ3,33 2
87	Adaptive Management: Science and Analysis	\$1,087	17	\$824	\$1,307
	Real Time Management: Calibration and improvements	ψ 2,00 7	±,	752 1	Ţ _ ,50,
88	to KLAMSIM or other modeling and predictions	\$109	3	\$84	\$131
89	Interim Flow and Lake Level Program	7103	Evaluated in Irrigate		

Source: CDM 2011b

IMPLAN results presented in 2012 dollars

UKL: Upper Klamath Lake

¹Total Impact = Direct + Indirect + Induced Impacts

² Employment is measured in number of jobs. Construction-related employment estimates include the in-field workforce plus all additional jobs generated by project construction expenditures, e.g., in retail, services, manufacturing, and other related sectors throughout the economy.

³ Income is the dollar value of total payroll (including benefits) for each industry in the analysis area plus income received by self-employed individuals located within the analysis area.

⁴ Output represents the dollar value of industry production.

Regional economic effects are calculated only on the planned KBRA spending that is in addition to base funding that would likely be spent by Federal agencies without KBRA implementation. Effects are based on funding levels identified by Federal agencies in a revised Table C-2 of the KBRA. Effects would occur over the KBRA implementation period (2012-2026) and would vary year by year, proportionate to actual expenditures. Some actions would be completed in less than 15 years.

Irrigated Agriculture

Gross Farm Revenue

Figure 4.4.1-10 presents irrigated agriculture acreage by crop and average gross revenue 2005 through 2009. Changes in Reclamation's Klamath Project Figure 4.4.1-10: Irrigated Agriculture Acreage and Revenue in hydrology could affect gross farm revenue and the regional economy. Table 4.4.1-32 identifies the KBRA actions evaluated for irrigated agriculture impacts.

The economic region used to model agricultural impacts includes Klamath County Oregon and Siskiyou and Modoc counties California.

Model results indicated that gross farm revenue would be equal in all years with facilities removal relative to the dams remaining in place, except for five modeled drought years (2027, 2043, 2045, 2051, and 2059). The drought years were estimated using the indexed sequential hydrology modeling using the 1961 hydrologic conditions, explained in the Irrigated Agriculture Economics Technical Report For the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon (Reclamation 2011g). For the five modeled drought years 2027, 2043, 2045, 2051, and 2059, the gross farm revenue increased with facilities removal relative to the dams remaining in place. Table 4.4.1-31 shows gross farm revenue with facilities removal. For all modeled drought years, regional employment, labor income and output would be higher than if the dams remained in place, shown in Table 4.4.1-33. These increases are possible under KBRA because of programs including the on-project program, drought plan, and the water certainty.

the Area of Analysis

√√ Irriç	gated <i>F</i>	Agricul	ture				
Reclamation's Klamath Project delivers irrigation water to about 200,000 farmland acres and 35,000 wetland acres in Siskiyou, Modoc, and Klamath Counties Average gross revenue from 2005 to 2009 was about 5148.6 million							
Crop Acreage Summary for Irrigated Agriculture							
Crop	2005	2006	2007	2008	2009	Average	
Small Grains	10,962	13,952	14,083	16,216	11,943	13,431	
Wheat	35,401	28,126	25,761	30,318	35,211	30,964	
Alfalfa	77,104	81,587	82,933	79,561	77,654	79,768	
Irrigated Pasture	40,046	42,973	43,544	44,846	44,564	43,197	
Potatoes	11,427	15,869	11,861	12,126	12,789	12,815	
Polatoes							
Other ¹	6,655	7,577	8,041	7,440	7,917	7,527	
	6,655 11,711	7,577 5,949	8,041 7,746	7,440 6,500	7,917 4,962	7,527 7,374	

Table 4.4.1-32: Gross Farm Revenue by IMPLAN Crop Sectors Between the Dams In and Dam Out with KBRA for Drought Years (1,000 dollars)

	<u>Grains</u>		<u>Vegetal</u>	<u>Vegetables</u>		Other (Hay & Pasture)		<u>Total</u>	
Modeled Drought Years	Full Facilities /Partial Facilities Removal	Increase when compared to Dams In	Full Facilities/ Partial Facilities Removal	Increase when compared to Dams In	Full Facilities/ Partial Facilities Removal	Increase when compared to Dams In	Full Facilities/ Partial Facilities Removal	Increase when compared to Dams In	
2027	21,857	2,667	60,993	319	65,688	7,301	148,537	10,287	
2043	21,664	17,145	60,966	5,000	64,439	36,798	147,069	58,944	
2045	21,857	10,394	60,993	2,432	65,688	18,438	148,537	31,263	
2052	21,857	4,779	60,993	866	65,688	9,872	148,537	15,517	
2059	21,857	1,556	60,993	203	65,688	5,231	148,537	6,990	

Source: KB_HEM estimated gross farm revenue by IMPLAN crop sectors as cited in Reclamation 2011g.

Table 4.4.1-33: Regional Economic Impacts from Gross Farm Revenue between Dams In and Dams Out with KBRA for Drought Years (2012 dollars)

	Employment ²			act ¹ Icome ³	<u>Output⁴</u>	
Modeled Drought Years	Additional Jobs Compared to Dams In (Jobs)	% Change from Dams In	Additional Income Compared to Dams In (\$ millions)	% Change from Dams In	Additional Output Compared to Dams In (\$ millions)	% Change from Dams In
2027	112	8.2	2.3	5.2	13.0	7.3
2043	695	90.6	11.2	33.8	84.0	71.4
2045	397	36.9	7.3	18.1	41.0	26.0
2052	187	14.5	3.6	8.1	20.0	11.4
2059	70	5.0	1.6	3.5	9.0	4.8

Source: Reclamation 2011g

On Farm Pumping Costs

Increases in on-farm pumping costs could affect household income and reduce employment, labor income, and output in the regional economy. Regional employment, labor income, and output with facilities removal are equal to the employment, labor income, and output with dams remaining in place in all non-drought years. The regional economic effects of changes in on-farm pumping would be the same in all drought years because it is assumed that irrigators would use groundwater supplies to supplement irrigation.

Irrigators would be pumping more groundwater with dam removal than with the dams in and therefore would be paying more for electricity with dam removal, even with a decrease in electricity rates assumed for both partial and full facilities removal (Reclamation 2011c, 2011b). The average annual cost of pumping groundwater would be \$178,000 per year.

Because farmers would be paying more for electricity to pump groundwater with dam removal and implementation of KBRA, household income would reduce by the additional money spent to pump groundwater. A reduced household income due to increased pumping costs would have a relatively small negative impact on the regional economy. Regional economic effects would be a loss of one job, a decrease of about \$41,000 in labor income and a decrease of about \$121,000 in output.

Water Acquisitions

KBRA programs include several water acquisition programs that involve the voluntary sale of a water right or short-term voluntary water leasing. The regional impacts of these actions are measured by the impacts associated with the reduction in irrigated agricultural production from the water right transfer or lease, and by the impact of the water transfer compensation or lease payment to growers. These payments often compensate, to some degree, for

¹ Total Impact = Direct + Indirect + Induced Impacts

² Employment is measured in number of jobs.

³ Income is the dollar value of total payroll (including benefits) for each industry in the analysis area plus income received by self-employed individuals located within the analysis area.

⁴ Output represents the dollar value of industry production.

the impacts from reduced irrigated crop production. The net RED impact is the sum of these two impacts.

Permanent Voluntary Water Rights Sales The water acquisition programs, including the Water Use Retirement Program (WURP) and the Off-Project Reliance programs in the KBRA, could result in a negative regional effect. The WURP would be implemented to generate on an average annual basis an additional 30,000 acre-feet of inflow to Upper Klamath Lake. The KBRA states that the WURP would provide for increased stream flow and inflow into Upper Klamath Lake through actions that could include the voluntary transfer of water rights or water uses. The KBRA states "acquisition of water rights or uses to achieve the WURP purpose will be compensated, as applicable, through market mechanisms based upon values mutually agreed to by purchaser and seller, as informed by appraisals." Water right transfers proposed as part of WURP could affect the regional economy. The land once irrigated with the surface water right would be converted to either dryland production or would be fallowed. If all or part of the land was converted to dryland and/or was fallowed, the losses to the economy would be the gross revenue produced on this land.

The second aspect of WURP that could affect the regional economy is that only growers would be compensated, no compensation would be paid to those in the regional economy who do not own the water right yet are affected by the grower's activities. Farm workers, agribusiness firms such as fertilizer and chemical dealers and wholesale and agricultural service providers are examples of those who would not receive compensation but would be affected by the water right sale.

The lands currently being irrigated by the water rights proposed to be acquired under the WURP program are off Project in the Sprague River sub-basin; the Sycan River; the Williamson River sub-basin; and the Wood River sub-basin. This land is mostly used to grow irrigated pasture to support local livestock operations.

The combined impact of the lost irrigated pasture production and the associated livestock forward linkage from the 30,000 acre-foot water right sale proposed under the WURP program is an loss of 34 jobs, \$0.86 million in labor income, and 5.85 million in output. However, a portion of these effects would be offset from household induced effects resulting from household wages that are spent as a result of the compensation made to the water right holder.

Short-Term Water Leasing Other programs in the KBRA, like the Off-Project Reliance Program and the Interim Flow and Lake Level Program, suggest the use of water lease programs in drought years. Water lease programs are short-term programs that may have negative effects on the regional economy during water short years. The programs allow farmers to sell or lease their water for fisheries programs on a short-term basis when sufficient water is unavailable for fish. The regional economy would be affected by the loss in gross farm revenue generated on the land idled by farmers who voluntarily lease water. Household induced effects would offset some of these regional effects when farmers spend a portion of the compensation in the local area. Because the KBRA does not

specify what crops would be idled, is not possible to use IMPLAN to measure these effects.

Refuge Recreation

The economic region used in the refuge recreation regional economic impact analysis is based on the locations of the Lower Klamath Lake and Tule Lake National Wildlife Refuges. These two refuges sit along the border of Oregon and California in Siskiyou County (California) and Klamath County (Oregon). While a small portion of Tule Lake Refuge also lies within Modoc County, California, expenditures are most likely to take place either in Klamath Falls Oregon (Klamath County) or Tule Lake California (Siskiyou County).

Changes in water supply for the two National Wildlife Refuges could affect refuge recreational visitation and expenditures and associated employment, labor income, and output in the regional economy. While the effect of the KBRA on wildlife viewing could not be determined, there would be an additional estimated 3,634 hunting trips (USFWS 2011). The addition of these trips would result in an increase of \$287,099 in direct expenditures within the regional economy. Regional impacts would be an increase of 5 jobs, \$0.12 million in labor income, and \$0.27 million in output.

Regulatory Assurances

The KBRA includes regulatory assurance actions that generally include conservation and habitat planning and construction for the Reclamation's Klamath Project fish screens. Regulatory assurances actions correspond to line items #90-93 in the Revised Appendix C-2. These actions would provide new jobs and increase labor income within the region during the implementation period (2012–2026) and would vary year by year, proportionate to actual expenditures. The Reclamation's Klamath Project fish screens' action would be complete in 4 years and the Federal General Conservation Plans/Habitat Conservation Plans would be implemented over 8 years. These actions would result in a total of \$10.2 million in direct expenditures within the local economies. Regional impacts would be an increase of 146 jobs, \$7 million in labor income, and \$17.4 million in output.

The KBRA also identified actions to develop laws for California and Oregon. The states would be responsible for implementing these actions. These actions would provide some local employment to state government staff in the region. Much of the work would occur by state workers outside of the region, which would not affect the regional economy.

County Programs

The Klamath County Economic Development Plan would include a study and implementation of projects for economic development associated with fisheries restoration and reintroduction, tourism and recreational development, agricultural development, alternative energy development, and The Klamath Tribes economic development (KBRA 27.3.1). Appendix C-2 of the KBRA indicates \$3.2 million of funding for the plan in 2016. The Klamath County Development Plan also calls for Klamath County to be compensated for the loss of property tax revenues from reduced agricultural land values in Reclamation's

Klamath Project due to a reduction of water deliveries and reduced agricultural land values in the areas upstream of Upper Klamath Lake due to the willing (compensated) surrender of significant water rights. Implementation of these actions would support long-term economic growth in Klamath County, by funding county programs, providing jobs, attracting visitors, attracting new businesses to establish in the area, supporting the agricultural economy, and supporting economic growth of tribes.

Funds from the California Water Bond Legislation could be used by Siskiyou County to improve economic conditions in the county and to support future economic growth. The economic downturn that began in 2008 has adversely affected Siskiyou County. Siskiyou County's 2009 and 2010 unemployment rates are the highest in the county since the early 1990s, and unemployment and poverty rates are consistently well above state averages. California legislation passed in 2009 proposes a bond measure to fund an economic development plan for Siskiyou County and for hydroelectric facilities removal. The bond measure, if passed, would also fund other mitigation measures to reduce the potential effect of dam removal. The California Water Bond funding legislation is scheduled for a vote in 2012. If approved, bond funds would be used for economic development in Siskiyou County and mitigations (\$250 million; one mitigation includes protection of City of Yreka water supply). Humboldt and Del Norte counties are not included in the economic development fund. Remaining bond measure funds may be used for fisheries restoration projects in Siskiyou, Humboldt and Del Norte counties, including removal or improvement of bridges, culverts, diversions, or other obstructions to fish passage.

It cannot be determined at this time how Siskiyou County would distribute funds from the California Water Bond Legislation. However, the bond funds could assist Siskiyou County in addressing unemployment, poverty, bankruptcy, and social problems, and continuing funding for other county programs. Spending would likely increase employment opportunities and labor incomes in the county, which would result in a long-term, positive economic effect.

Some funds from the California Water Bond Legislation may be left over for fishery restoration projects in Siskiyou, Humboldt and Del Norte counties. Implementation of these projects would result in economic effects similar to those described for the Fisheries Restoration Program. Fishery restoration projects implemented by the California Water Bond Legislation would result in a long-term and positive economic effect.

Tribal Program

Tribal Programs correspond to line items #100-110 in the Revised Appendix C-2 (CDM 2011b). Construction and monitoring activities associated with Tribal Program actions would increase jobs, labor income, and output for The Klamath Tribes, Karuk Tribe, and Yurok Tribe. Federal agencies have identified funding for fisheries and conservation management actions to be implemented by tribes with dam removal. Effects would occur in Klamath, Siskiyou, Humboldt and Del Norte counties where tribes are located and would be spread over the 2012–2026 period. Spending on local actions would affect employment, labor income, and output in the regional economy. Most actions would be implemented by

tribal staff and would positively affect the economic conditions of the tribes. A portion of the funding would result in positive effects in the construction sector and professional and technical services sector. These actions would result in a total of \$25 million in direct expenditures within the local economies. Regional impacts would be an increase of 378 jobs, \$17.9 million in labor income, and \$30.3 million in output.

4.4.1.8 County Tax Revenues

PacifiCorp owns property around the reservoirs and pays property taxes annually to Siskiyou and Klamath counties. PacifiCorp pays in the range of \$290,000 to \$305,000 in property taxes on land attributable to hydroelectric facilities at Copco and Iron Gate dams and about \$132,000 in property taxes for land attributable to hydroelectric facilities at J.C. Boyle Dam. With dam removal, the states would assume ownership of these lands and PacifiCorp would not pay property taxes on the relinquished land to the counties.

The states of California and Oregon would pay in-lieu payments on the transferred land. In-lieu fees would be equivalent to the current assessment paid by PacifiCorp for hydroelectric properties. To make in-lieu payments to counties, the California legislature has to authorize payments. In recent years, the California legislature has not authorized funding for in-lieu payments and counties have not received revenues associated with transferred lands. Lost tax revenues to Siskiyou and Klamath counties would be an adverse economic effect.

Summary of Regional Economic Impact Results

Tables 4.4.1-34 and 4.4.1-35 summarize the estimated regional economic impacts estimated using IMPLAN as described above. The information in this table is described in Reclamation 2011c and CDM 2011b.

Table 4.4.1-34: Regional Economic Development Impact Analysis Summary Table 1

Category	Dams In	Full Facilities Removal (Incremental changes from Dams In) (2012 dollars)	Partial Facilities Removal (Incremental changes from Dams In) (2012 dollars)
2.1 Dam Decommissioning Economic Region: Klamath County OR Siskiyou County CA Regional Economy: Employment (Jobs): 48,204 Labor Income: \$1,928 million	None	Short-term impacts during the 1-year decommissioning. Approximately 1,400 jobs, \$60 million in labor income, and \$163 million in output estimated to stem from in-region decommissioning expenditures	Short-term impacts during the 1-year decommissioning. Approximately 1,100 jobs, \$48 million in labor income, and \$132 million in output estimated to stem from in-region decommissioning expenditures

	Category	Dams In	Full Facilities Removal (Incremental changes from Dams In) (2012 dollars)	Partial Facilities Removal (Incremental changes from Dams In) (2012 dollars)
2.2	Operation and Maintenance Economic Region: Klamath County OR Siskiyou County CA Regional Economy: Employment (Jobs): 48,204 Labor Income: \$1,928 million Output: \$5,139 million	Regional economic impacts stemming from existing in-region O&M expenditures were estimated to generate approximately 49 jobs and labor income and output of \$2 million and \$5 million, respectively	No long-term annual O&M expenditures; therefore, the regional economy would lose the 49 jobs, \$2 million of labor income, and \$5 million output associated with the in-region O&M expenditures for dams in	Based on in region O&M expenditures, approximately 47 jobs, \$2 million in labor income, and \$5 million in output would be lost to the regional economy compared to having dams remain.
2.3	Mitigation Economic Region: Klamath County OR Siskiyou County CA Regional Economy: Employment (Jobs): 48,204 Labor Income: \$1,928 million Output: \$5,139 million	None	These would be temporary short-term impacts and vary year by year during 2018–2025 proportionate to actual in-region expenditures. A total of approximately 220 jobs, \$10 million in labor income, and \$31 million in output during the years 2018–2025 were estimated to stem from the total in region mitigation expenditures.	Same as for the full facilities removal.
2.4	Irrigated Agriculture Economic Region: Klamath County OR Siskiyou and Modoc counties CA Regional Economy: Employment (Jobs): 52,141 Labor Income: \$2,083 million Output: \$5,497 million	Regional economic impacts stemming from irrigated agriculture were estimated to be equal in all years except for the years in the hydrologic model that correspond with the drought years of 1975, 1992, 1994, 2001, and 2008. Estimated regional economic impacts stemming from irrigated agriculture for the years in the hydrologic model that correspond with the drought years of 1975, 1992, 1994, 2001, and 2008:	Regional economic impacts stemming from irrigated agriculture were estimated to be equal in all years except for the years in the hydrologic model that correspond with the drought years of 1975, 1992, 1994, 2001, and 2008. Estimated regional economic impacts stemming from the change in irrigated agriculture for the years in the hydrologic model that correspond with the drought years of 1975, 1992, 1994, 2001, and 2008 – dams in versus full facilities removal.	Same as for the full facilities removal.
		2027 — Jobs 1,361 Labor Income \$45 million Output \$184 million	2027 — Jobs 112 Labor Income \$2 million Output \$13 million	

Table 4.4.1-34: Regional Economic Development Impact Analysis Summary Table 1

			Full Facilities Removal (Incremental changes from Dams In)	Partial Facilities Removal (Incremental changes from Dam In)
	Category	Dams In	(2012 dollars)	(2012 dollars)
		2043 —	2043 —	
		Jobs 766	Jobs 695	
		Labor Income \$33 million	Labor Income \$11 million	
		Output \$118 million	Output \$84 million	
		2045 —	2045 —	
		Jobs 1,076	Jobs 397	
		Labor Income \$40 million	Labor Income \$7 million	
		Output \$156 million	Output \$41 million	
		2051 —	2051 —	
		Jobs 1,286	Jobs 187	
		Labor Income \$44 million	Labor Income \$4 million	
		Output \$177 million	Output \$20 million	
		2059 —	2059 —	
		Jobs 1,403	Jobs 70	
		Labor Income \$46 million	Labor Income \$2 million	
		Output \$188 million	Output \$9 million	
2.5	Commercial Fishing	Estimated regional	Estimated regional economic	Same as for the full facilities
		economic impacts	impacts stemming from the	removal.
	Economic Regions and	stemming from ocean	change in ocean commercial	
	Regional Economies:	commercial fishing:	fishing between dams in versus full facilities removal.	
	San Francisco	San Francisco		
	Management Area (San	Management Area	San Francisco Management	
	Mateo, San Francisco,		Area	
	Marin and Sonoma	Jobs: 510	Labor 240	
	counties CA)	Labor Income: \$6.10 million	Jobs: 218	
	Employment (Jobs):	Output: \$15.52 million	Labor Income: \$2.56 million Output: \$6.6 million	
	3,060,366		Catpat. \$6.6 mmon	
	Labor Income: \$204,685			
	million			
	Output: \$599,164 million			
	Fort Bragg Management	Fort Bragg	Fort Bragg Management Area	
	Area (Mendocino County	Management Area		
	CA)	I-h-: 462	Jobs: 69	
	Employment (Iaba), 40 447	Jobs: 162	Labor Income: \$1.05 million	
	Employment (Jobs): 40,117 Labor Income: \$1,731	Labor Income: \$2.45 million Output: \$5.62 million	Output: \$2.41 million	
	million	οαιμαί. 33.02 IIIIIII0II		
	Output: \$4,814 million			
		. VN47.CA	. VN47 CA	
	 KMZ-CA (Humboldt and Del Norte counties CA) 	• KMZ-CA	• KMZ-CA	
	Ser Horte counties CA)	Jobs: 44	Jobs: 19	
	Employment (Jobs): 71,633	Labor Income: \$0.19 million	Labor Income: \$0.07 million	
	Labor Income: \$2,983	Output: \$0.45 million	Output: \$0.19 million	
	million			
	Output: \$7,360 million			

Table 4.4.1-34: Regional Economic Development Impact Analysis Summary Table 1

	Category	Dams In	Full Facilities Removal (Incremental changes from Dams In) (2012 dollars)	Partial Facilities Removal (Incremental changes from Dam In) (2012 dollars)
	• KMZ-OR (Curry County OR)	• KMZ-OR	• KMZ-OR	
	Employment (Jobs): 8,656 Labor Income: \$311 million Output: \$859 million	Jobs: 26 Labor Income: \$0.15 million Output: \$0.33 million	Jobs: 11 Labor Income: \$0.06 million Output: \$0.13 million	
	Central Oregon Management Area (Coos, Douglas and Lane)	Central Oregon Management Area	Central Oregon Management Area	
	counties OR)	Jobs: 319 Labor Income: \$4.15 million	Jobs: 136 Labor Income: \$1.74 million	
	Employment (Jobs): 258,047 Labor Income: \$10,170 million	Output: \$9.55 million	Output: \$4.07 million	
	Output: \$27,815 million			
2.6	In-River Sport Fishing	Recreational Salmon Fishery	Recreational Salmon Fishery	Recreational Salmon Fishery
	Economic Region: Klamath County OR Del Norte, Humboldt, and Siskiyou counties CA	Regional economic impacts stemming from in river salmon fishing trip expenditures were	Regional economic impacts stemming from the change in river salmon fishing trip expenditures were estimated to create approximately three more jobs	Same as for the full facilities removal.
	Regional Economy: Employment (Jobs): 119,837 Labor Income: \$4,911 million Output: \$12,499 million	estimated to create approximately 34 jobs and stimulate about \$0.93 million of labor income and \$2.01 million of output.	and stimulate increases of about \$0.07 million of labor income and \$0.15 million of output compared to dams in.	
		Recreational Steelhead Fishery	Recreational Steelhead Fishery	Recreational Steelhead Fishery
		Regional economic impacts stemming from in-river steelhead fishing trip expenditures were estimated to create approximately 20 jobs and stimulate about \$0.62 million of labor income and \$1.31 million of output.	The Coho/Steelhead Expert Panel Report and previous studies were generally positive regarding the potential for increased distribution and abundance of steelhead. However, insufficient data precluded estimation of potential regional economic impacts associated with changes in steelhead fishing trip expenditures compared to dams in.	Same as for the full facilities removal.

Table 4.4.1-34: Regional Economic Development Impact Analysis Summary Table 1

	Category	Dams In	Full Facilities Removal (Incremental changes from Dams In) (2012 dollars)	Partial Facilities Removal (Incremental changes from Dams In) (2012 dollars)
		Recreational Redband Trout Fishery	Recreational Redband Trout Fishery	Recreational Redband Trout Fishery
		A popular guide fishery occurs on the lower Williamson. Given demand for guide trips is generally higher among non-resident than resident anglers, the proportion of trips by non-resident anglers is likely higher; however, data are lacking to verify this or quantify regional economic impacts associated with in-region guide fishing expenditures.	The Resident Fish Expert Panel concluded that Full Facilities Removal would result in increased abundance and distribution of redband trout in Upper Klamath Lake and its tributaries and a potential seven-fold increase in the trophy fishery in the Keno Reach. However, the potential regional economic impacts of this notable increase could not be quantified with available data.	Same as for the full facilities removal.
2.7	Ocean Sport Fishing	• KMZ-OR – Curry County OR	• KMZ-OR – Curry County OR	Same as for the full facilities removal.
	Economic Regions and Regional Economies: • KMZ-OR – Curry County OR Employment (Jobs): 8,656 Labor Income: \$311 million Output: \$859 million • KMZ-CA – Humboldt and Del Norte counties CA Employment (Jobs): 71,633 Labor Income: \$2,983 million Output: \$7,360 million	An estimated three jobs, \$0.08 million of labor income, and \$0.21 million in output were estimated to stem from in-region ocean sport salmon fishing related expenditures	Regional economic impacts stemming from the change in inregion ocean sport salmon fishing trip expenditures were estimated to be increases of approximately one job, \$0.02 million in labor income, and \$0.09 million in output compared to dams In.	
		KMZ-CA – Humboldt and Del Norte counties CA	KMZ-CA – Humboldt and Del Norte counties CA	
		Approximately 13 jobs, \$0.42 million of labor income, and \$1.12 million of output were estimated to stem from in-region ocean sport salmon fishing related expenditures	Regional economic impacts stemming from the change in inregion ocean sport salmon fishing trip expenditures between the dams in and full facilities removal were estimated to be approximately five more jobs, \$0.18 million of labor income, and \$0.48 million of output.	

Table 4.4.1-34: Regional Economic Development Impact Analysis Summary Table 1

	Category	Dams In	Full Facilities Removal (Incremental changes from Dams In) (2012 dollars)	Partial Facilities Removal (Incremental changes from Dams In) (2012 dollars)
2.8	Refuge Recreation Economic Region: Klamath County OR Siskiyou County CA Regional Economy: Employment (Jobs): 48,204 Labor Income: \$1,928 million Output: \$5,139 million	Approximately 11 jobs stem from refuge hunting related expenditures and stimulate about \$0.26 million of labor income and \$0.62 million of output	The change in refuge hunting expenditures between the dams in and full facilities removal was estimated to create 5 more jobs, increase labor income by \$0.12 million, and output by \$0.27 million compared to dams in.	Same as for the full facilities removal.
2.9	Reservoir Recreation Economic Region: Klamath County OR Siskiyou County CA Regional Economy: Employment (Jobs): 48,204 Labor Income: \$1,928 million Output: \$5,139 million	Approximately seven jobs stem from reservoir recreation related expenditures. Reservoir recreation related expenditures stimulate about \$0.22 million of labor income and \$0.54 million of output.	Four jobs would be lost with the change in reservoir recreation related expenditures between dams in and full facilities removal. Labor income and output would decline by \$0.13 million and \$0.31 million respectively compared to dams in.	Same as for the full facilities removal.
2.10	Whitewater Recreation Economic Region: Klamath and Jackson counties OR Humboldt and Siskiyou counties CA Regional Economy: Employment (Jobs): 224,667 Labor Income:\$8,682 million Output: \$23,330 million	Jobs stemming from whitewater recreation expenditures made inside the region account for almost 56 jobs. Labor income and output produced by the in region whitewater expenditures account for \$1.56 million and \$4.31 million respectively.	Jobs stemming from whitewater recreation expenditures made inside the region would decline by 14 compared to dams in; labor income and output would decline by \$0.43 million and \$0.89 million respectively.	Same as for the full facilities removal.

¹ Impacts are presented as average annual values unless otherwise stated.

Table 4.4.1-35: KBRA Program Regional Economic Development Impact Analysis Summary Table 1

KBRA Program	Dams In	Full Facilities Removal (Incremental changes from Dams In) (2012 dollars)	Partial Facilities Removal of Four Dams (Incremental changes from Dams In) (2012 dollars)
Fisheries Program Economic Region: Klamath County OR Del Norte, Humboldt, and Siskiyou Counties CA Regional Economy: Employment (Jobs): 119,837 Labor Income: \$4,911 million Output: \$12,499 million	Fishery restoration, reintroduction and monitoring expenditures support 2,015 jobs, \$95 million in labor income and \$203 million in output.	Increase of approximately 3,917 jobs (average annual of 261), \$186.8 million in labor income and \$380 million in output.	Same as for the full facilities removal.
Economic Region: Klamath County OR Del Norte, Humboldt, and Siskiyou Counties CA Regional Economy: Employment (Jobs): 119,837 Labor Income: \$4,911 million Output: \$12,499 million Economic Region (related to Klamath Project): Klamath County OR Modoc and Siskiyou Counties CA Regional Economy: Employment (Jobs): 52,140 Labor Income: \$2,082 million Output: \$5,498 million	No ongoing activities under the water resources program.	Water resources program expenditures supports 243 jobs (average annual of 16), \$11.2 million in labor income and \$24.2 million in output. See for Irrigated Agriculture and Refuge Recreation in Table 4.1-13 for effects of KBRA actions.	Same as for the full facilities removal.
Regulatory Assurances: Economic Region: Klamath County OR Del Norte, Humboldt, and Siskiyou Counties CA Regional Economy: Employment (Jobs): 119,837 Labor Income: \$4,911 million Output: \$12,499 million	No ongoing activities	Implementation of regulatory assurances would support 146 jobs (average annual of 10), \$7 million in labor income and \$14.4 million in output.	Same as for the full facilities removal.

Table 4.4.1-35: KBRA Program Regional Economic Development Impact Analysis Summary Table 1

KBRA Program	Dams In	Full Facilities Removal (Incremental changes from Dams In) (2012 dollars)	Partial Facilities Removal of Four Dams (Incremental changes from Dams In) (2012 dollars)
County Program: Siskiyou County CA Employment (Jobs): 17,679 Labor Income: \$755 million Output: \$2,107 million Klamath County OR Employment (Jobs): 30,525 Labor Income: \$1,174 million Output: \$3,032 million	No ongoing activities	\$20 million of funding for Siskiyou County would increase jobs, labor income and output. \$3.2 million of funding for Klamath County would increase jobs, labor income and output.	Same as for the full facilities removal.
Tribal Program: Economic Region: Klamath County OR Del Norte, Humboldt, and Siskiyou Counties CA Regional Economy: Employment (Jobs): 119,837 Labor Income: \$4,911 million Output: \$12,499 million	Karuk Tribal Program expenditures support 237 jobs, \$10.5 million in labor income and \$16.3 million in output. Klamath Tribal Program expenditures support 174 jobs, \$8.7 million in labor income and \$14.3 million in output. Yurok Tribal Program expenditures support 208 jobs, \$10 million in labor income and \$17.8 million in	Karuk Tribal Program results in an increase of approximately 122 jobs (annual average of 8), \$5.2 million in labor income and \$8.3 million in output. Klamath Tribal Program results in an Increase of approximately 120 jobs (annual average of 8), \$5.8 million in labor income and \$9.6 million in output. Yurok Tribal Program results in an Increase of approximately 144 jobs (annual average of 10), \$6.8 million in labor income and \$12.1 million in output.	Same as for the full facilities removal.

Economics values reported as total impacts over 15 years. These would be temporary short-term impacts and vary year by year during 2012–2026 proportionate to actual in-region expenditures.

SECTION 4 • Secretarial Determination Findings of Technical Studies

4.4.1 Economic Analysis

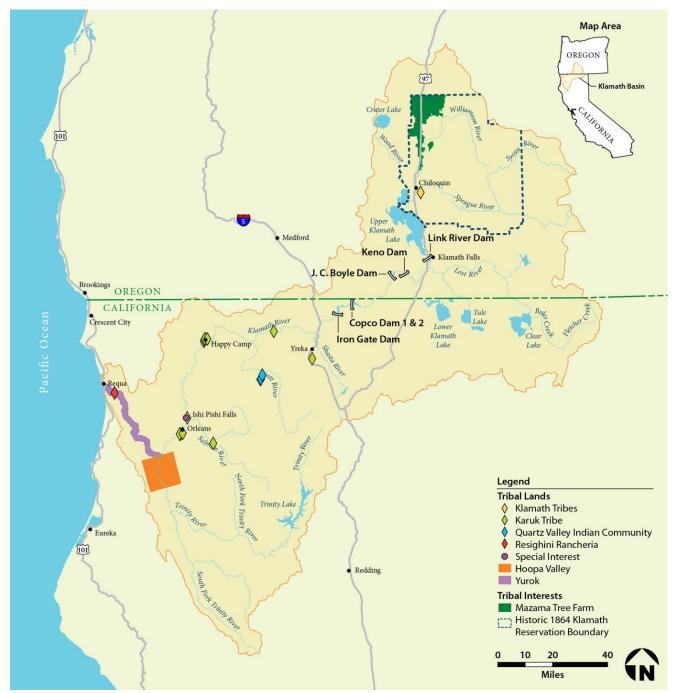
This page intentionally left blank.

4.4.2 Tribal

This section describes the historic and existing effects of the Four Facilities, as well as potential effects from their proposed removal, on the Indian trust resources, traditional cultural practices, and the physical, emotional, and economic health of the Indian tribes in the Klamath Basin. This section relies on three source documents:

- 1) Current Effects on Indian Trust Resources and Cultural Values (DOI 2011a).
- 2) Potential Effects of Implementing the KHSA and KBRA on Trust Resources and Cultural Values (DOI 2011b).
- 3) Economics and Tribal Summary Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon (Reclamation 2011c).

4.4.2.1 Background


The northwest coast of California is considered the southern geographic extent of "The Salmon Culture," characterized by historical runs of salmon and other fisheries and the presence of indigenous people who have developed elaborate ways of life that are intricately tied to the runs. Klamath Basin tribes have social, cultural, and economic ties to each other due in large part to their shared reliance on the resources associated with the Klamath River and its tributaries, particularly salmon. This reliance extends well beyond subsistence and commerce to the cultural and social fabric of their societies, as evidenced by their traditional ceremonial and spiritual practices that focus on the Klamath River and its fish. Salmon far exceeds other resources in its importance to the diet and culture of the Klamath Basin tribes (Swezey and Heizer 1977; Warburton and Endert 1966).

At the time of contact with Euro-Americans in the early 19th century, diverse Indian cultural groups inhabited their aboriginal territories within portions of the Klamath River drainage. The ancestral territory of the Yurok included the lowest reach of the river and its mouth as well as stretches of the Pacific Coast. The Hupa (Hoopa Valley Tribe) were primarily on the Trinity River, a main tributary of the Klamath River. The Karuk were most closely associated with the middle reaches of the Klamath River. The Shasta (not federally recognized as a tribe) occupied areas along the Klamath River east of Karuk territory to the location of the California and Oregon border. The Modoc and Klamath, and the Yahooskin Band of Snake peoples (Klamath Tribes), lived in the upper reaches of the drainage. Figure 4.4.2-1 identifies the current location of the six federally recognized tribal governments and other features within the basin.

The U.S. Court of Appeals for the 9th Circuit recognized the importance of fish to area tribes when it concluded that fish were "not much less necessary to the existence of the Indians than the atmosphere they breathed."

(Blake v. Arnett, supra, at 909 1981)

Figure 4.4.2-1: Map of Current Tribal Reservation Locations, Other Features, and Reserve Areas (Disclaimer: Tribal reservation and lands are close approximations for general reference purposes only.)

4.4.2.2 Tribal Trust Resources, Rights and Other Resources Traditionally Used by Tribes

There are six federally recognized tribal governments in the study area that are affected by the Secretarial Determination Process; the Yurok Tribe, Resighini Rancheria, Hoopa Valley Tribe, Karuk Tribe, Quartz Valley Indian Community of the Quartz Valley Reservation, and the Klamath Tribes.

The Federal government has a responsibility to ensure that trust resources and other associated rights are properly managed for the benefit of each federally recognized tribe or individual Indian trust landowner. The Federal government has additional responsibilities as presented in multiple Federal laws and related regulations such as the National Environmental Policy Act (NEPA) (42 U.S.C. § 4321 et seq.), the CWA (33 U.S.C. §1251 et seq.), National Historic Preservation Act (NHPA) (16 U.S.C. § 470 et seq.), American Indian Religious Freedom Act (42 U.S.C § 1996), Executive Order No. 13007: Indian Sacred Sites and Executive Order No. 12898 addressing environmental justice. The Federal government also has an obligation to consult with tribal governments concerning its actions following direction in several executive orders.

Indian trust resources consist of certain real property, natural resources, and related rights held in trust by the Federal government for the benefit of one or more federally recognized Indian tribes or individual Indians. Trust resources attributed to tribes are called "tribal" trust resources, and trust resources attributed to individual Indians (usually called "allottees") are called "individual" trust resources. Some tribes have the right to use resources that are transitory or migratory in nature and that move beyond the reach of Federal or tribal management (e.g., fish and water).

The nature and scope of tribal rights in the Klamath Basin are defined by treaties, statutes, executive orders, and other laws specific to the individual Indian tribes in the basin, resulting in unique tribal rights to trust resources for each tribe. In the case of the Klamath Basin tribes, the Federal government has the responsibility to safeguard the fishery to ensure that tribes with fishing rights are able to practice those rights. Water quantity and quality are essential for the success of a safeguarded fishery, and in providing for the maintenance of any federally recognized water rights identified for the tribes in the basin. Spiritual beliefs and traditional practices are inseparable from the river and surrounding homeland environments. Although the language groups and traditional practices sometimes vary among the tribes, all of them derived their cultures, commerce, and subsistence primarily from the river and its aquatic and terrestrial resources.

Fish, water, and other natural resources are incorporated into the traditional cultural practices of the tribes in the Klamath Basin. These traditional cultural practices (e.g., ceremonies to insure abundant fish populations and use of water for ceremonial bathing) are intertwined with the resources and are viewed as essential to the survival of the tribes. Consequently, degradation of fish, water, and other natural resources is viewed as affecting the spiritual, physical, and mental health of the Indians tribes of the Klamath Basin.

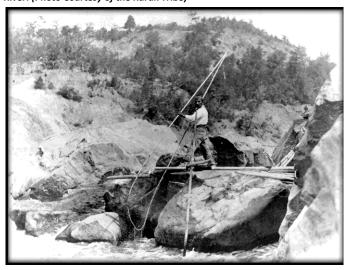
Indian Trust Resources

Indian trust resources are property or legal interests that the United States has a legal obligation to manage for the benefit of one or more federally recognized Indian tribes or individual Indians. Indian trust resources can include, but are not limited to, water rights, fishing rights, land, and minerals.

An Indian trust resource has three components:

- 1. The trustee (the United States)
- 2. The beneficiary (federally recognized Indian tribes and individual Indians)
- 3. The trust resource or right

By definition, Indian Trust Resources cannot be sold, leased, or otherwise encumbered without approval of the United States. The characterization and application of the United States trust relationship have been defined by case law that interprets Congressional acts, executive orders, and historic treaty provisions.


Other Resources Traditionally Used by Tribes

Tribes of the Klamath Basin also use resources that may not meet the legal definition of trust resources, but which are nonetheless part of their traditional or cultural lifestyle, and which may have independent legal protection. For the purposes of this discussion, these resources are referred to as other resources traditionally used by the Indian tribes of the Klamath Basin.

Cultural Values

Although the tribes of the Klamath Basin share many cultural values, their histories and practices are not necessarily the same. Consequently, each of the six federally recognized tribes in the Klamath Basin may have its own set of resources that it considers important to the formation and maintenance of its culture but that the Federal government does not currently regard as a trust resource.

Figure 4.4.2-2: Historical tribal photo of dip net fishing on the Klamath River. (Photo Courtesy of the Karuk Tribe)

Cultural values related to a tribal way of life centered on rivers and lakes are composed of myriad styles, practices, resources, and items transmitted and evolving through time, which together define the identities that are found in the six federally recognized Klamath Basin Tribes. Cultural values can be described as the unique manner in which tribal people access, take, prepare, administer, and otherwise use natural resources in unique tribal ways. Degradation of these resources may lead to a corresponding degradation of related cultures and practices associated with the mental, spiritual, and physical health of the Indian tribes in the Klamath Basin. For some tribes, these cultural values are linked to trust resources and rights only, but cultural values are also linked to other resources traditionally used by tribes.

For the tribes of the Klamath Basin, fish are integral to a world view that emphasizes interconnectedness, balance, and mutual respect as guiding principles. The diversity, abundance, distribution, run timing, and health of fish are important indicators of how well such balance is being maintained. The seasonal round of harvest provides sustained access to food that is synchronous with the cycles of nature. Fish are honored

in cultural and religious traditions such as the First Salmon Ceremony and the Return of the *c'waam* Ceremony, which traditionally precede the commencement of fishing for spring Chinook salmon and suckers, respectively. Fishing itself is a social and cultural activity; an opportunity to meet with family and friends; to engage in traditional fishing practices; to strengthen community bonds, demonstrate respect and promote food security by sharing fish with elders and others who are unable to fish; and to transmit these traditions to the next generation.

The Klamath Basin tribes identify culturally sensitive areas that are related to their traditional cultural practices along and in the vicinity of the Klamath River. These areas are an integral part of their culture and traditional life ways. The relation of these tribes to the river and access to its resources are significant

parts of their culture. A disruption of this relationship, whether due to a reduction in the fishery or a decline in the health of the river and/or access to culturally sensitive sites affects the ability of Klamath Basin tribes to maintain their traditional practices and culture. Improving the Klamath River ecosystem and removing obstacles to taking part in its resources would provide opportunities for Indian tribes to engage in traditional cultural practices.

Salmon and Other Aquatic Species

In an inextricably linked chain, the health of the Klamath Basin tribes is directly tied to the health of the fish, which is tied to the health of the rivers. Numerous observers over many decades have noted that salmon has far exceeded other resources in its importance in cultural and religious practices, tribal diets, and barter economies. The abundance of salmon has always been an important measure of tribal well being. Feasting is not simply an exercise in eating, but has deep-rooted connections to the vitality of the Earth and carries a traditional connotation of community health. Historically, the Klamath River fisheries have remained an essential part of the region's tribal economies.

Declining fish stocks have diminished or eliminated the ability of the Klamath Basin tribes to engage in their traditional cultural practices and ceremonies related to salmon and other fish and to subsist on anadromous fish as they have done for centuries. Table 4.4.2-1 summarizes the cultural, ceremonial, and social conditions associated with subsistence fishing.

Table 4.4.2-1: Effects of the Current Conditions and Projected Changes with KHSA and KBRA Implementation Common to all Tribes

to all Tribes		
	Current Conditions	Projected Changes with KHSA and KBRA Implementation
	Cultural, Socioeconomic, and Health Effe	cts
Ceremonial Uses	Altered cultural ceremonies (i.e., World Renewal Ceremony, Brush Dance), ceremonial bathing and ceremonial drinking from the Klamath River.	Improved toxic algae conditions would enable tribes to practice their religious ceremonies in the proper ways without the fear of health problems.
Fishing/Fish Consumption	Algae have made fishing more difficult as it covers nets. Contact with the water, and consumption of aquatic resources is a health concern because of toxic algae.	Less algae would improve fishing success. Contact with the water and consumption of aquatic resources would reduce health concerns.
Cultural Uses of Vegetation	Reduced availability of vegetation and loss of riparian habitat has made gathering and processing basketry materials more difficult, and water quality health concerns have limited consumption of riverine plants for food and as medicine.	Improved water quality and natural river conditions could increase the availability of edible and medicinal plants and other vegetation used for cultural purposes.

Source: DOI 2011a, 2011b

Water Quality - Health of the River

The Klamath River dams have caused water quality problems that, in addition to contributing to reduced fish populations, have had cultural and health impacts on Indian tribes. For example, the Karuk World Renewal ceremony is completed when the medicine man reaches the Klamath River at the end of his long journey and drinks water from the river. Similarly, bathing in the river is an important part of Klamath Basin Tribes' ceremonies such as the Brush Dance Ceremony, funeral rituals, and purification rites. Currently, some of these traditional practices do not occur very often because toxic algae blooms have led to health warnings along the river.

Figure 4.4.2-3: Sampling an algal bloom in Copco 1
Reservoir. The State of California regularly posts public
health warnings for these algal blooms due to the
presence of the algal toxin microcystin. (Photo Courtesy
of the Karuk Tribe)

Research completed for the Karuk Tribe showed that by 2003 the Karuk diet contained only 1.1 percent the amount of salmon consumed in "pre-contact" times, and the Karuk identified several health issues associated with no or limited access to certain food resources (Norgaard 2004). Other Indian tribes in the area have had similar experiences and health concerns and believe that their high rates of diabetes, heart disease, and related conditions are related to a restricted or lack of access to traditional food resources, primarily salmon, and other aquatic species.

Ingesting aquatic species has been another important human health concern because of the health warnings advising limiting or avoiding consumption of fish. Algal blooms also affect traditional fishing practices. Sites and fishing nets become clogged with algae, limiting the use of traditional fishing methods and the ability of tribal members to obtain fish.

Other water quality concerns revolve around gathering plants for consumption (including medicinal uses), basketry, and other cultural uses. Members of the Klamath Basin Tribes collect willow, wild grape, and cottonwood in the riparian zone along the Klamath River and use these materials to make baskets. Traditional collection of these basketry materials can involve wading in the Klamath River and washing and cleaning the materials in the river. Most basketry material are processed by mouth following cleaning with river water. The use of many plants for traditional practices and production of cultural items may pose a health risk. Table 4.4.2-2 summarizes water quality and related effects to the Klamath Basin Tribes and beneficial changes associated with dam removal and implementation of the KBRA.

Traditional Diet and Health Conditions

With the loss of naturally occurring resources, especially fish, Indian tribal members often have had no choice but to supplement their diets with government-provided subsidies and store-bought food. Studies have found that supplementing or replacing traditional diets of Indian people is often detrimental to their health, contributing to obesity and related diabetes in Indian populations today (DOI 2011b). U.S. Department of Agriculture food banks, in particular, provide highly processed staples that contain significant amounts of sodium, sugar, and fat. One study in California found that the foods provided by the food programs varied considerably in their nutritional quality, and healthier foods such as fresh fruits, vegetables, and meats were either completely lacking or in short supply (Dillinger et al. 1999). In the past 100 years, poor nutrition over the long term has led to diabetes, obesity, and hypertension, with cardiovascular disease now the leading cause of death for Indian tribal members.

	Current Conditions	Projected Changes with KHSA and KBRA Implementation
	Water Resources	
Hydrology	Unnatural hydrology Hydropower peaking pulses Homogenized flows Increased fish mortality and decreased riparian vegetation	More natural hydrology No hydropower peaking pulses Natural flushing flows would benefit aquatic species and riparian vegetation
Water Quality	Altered water temperature regime High nutrients Low dissolved oxygen High pH	More natural temperature regime and generally improved water quality would benefit aquatic life
Toxic Blue Green Algae	Reservoirs cause proliferation of toxic algae	Free flowing river segments would deter conditions that lead to toxic algal blooms and reduce human health risks
Habitat	Loss of habitat, less suitable water temperature regime, reduced bedload transfer, increased potential for fish disease/parasites	Additional habitat, and of higher quality, would decrease the incidence of fish diseases and parasites and increase abundance of fish
Aesthetics	Diminished aesthetics adversely affect opportunities for traditional and ceremonial uses	Improvements in water quality would improve aesthetics and opportunities for ceremonies, funerals, and similar religious observances that require a healthy river
	Aquatic Resources	
Traditional Lifestyle	Extirpation or reduced population abundance of salmon and subsistence fisheries contributes to lost opportunities for transmitting traditional knowledge to successive generations, including the important practice of giving fish to elders. The result has been a weakened sense of tribal identity and a contributing factor to incidences of social dysfunction among Indian populations.	Greater fisheries abundance would bolster opportunities for transmitting traditional knowledge to successive generations, including the important practice of giving fish to elders. Results would include a strengthened sense of tribal identity that could contribute to improving social cohesion and function among Indian populations.
Cultural and Religious Practices	Extirpation or greatly reduced abundance of salmon, sucker, and other culturally important fisheries has negated, truncated, or diminished some of the intrinsic components of religious ceremonies. Tribal identity has been adversely affected.	Improved abundance would facilitate the ability of the tribes to reinstate and continue to practice ceremonies in their historic, complete forms at the appropriate times of the year. Tribal identity would be improved.
Standard of Living	Reduced abundance of fish and other aquatic species has contributed to less food security for the Indian population. Estimated cost to purchase salmon in amounts comparable to traditional diets is estimated at over \$4,000 per tribal member per year (2005 dollars).	Increased abundance would contribute to greater food security for the Indian population, which could reduce their unemployment and poverty rates.
Health	Reduction in traditional fisheries diet, especially salmon, has been identified as a potential contributing factor to high diabetes, heart disease, and obesity rates (and associated complications) in the Indian population.	Greater opportunity for healthy food consumption associated with increased subsistence fishing opportunities which could improve overall health conditions.

Source: DOI 2011a, 2011b

The Klamath Tribes' oral history relates to salmon fishing. A story from *Gmukampc*, the Creator, appears to be related to the Klamath Hydroelectric Project:

"The people...had a big fish dam. They got greedy and kept building it higher, catching all the fish until no fish could get past them...the people upstream couldn't catch anything and were starving. They said the Creator got angry...and he asked the animals to help him tear down the dam....After the dam was gone, the people were all turned into rocks...they got punished. People fishing there could always see those rocks...it reminded them. (Spier 1930)".

Figure 4.4.2-4: Klamath Tribal Elder, Betty Blackwolf, prays for the c'waam at the Annual Return of the c'waam Ceremony on the banks of the Sprague River. Creator-(G'mokumpk) told the Native people to honor the c'waam after the first snow of each year and that if the fish are healthy, the people and the land will be healthy.

4.4.2.3 Tribal History, Historical and Current Effects of Dams, and Effects of Dam Removal

Klamath Tribes

The Klamath Tribes are a federally recognized tribe composed of the Klamath, Modoc, and Yahooskin Band of Snake Indians who were combined in 1864, when they relinquished an estimated 22 million acres of aboriginal territory in exchange for fishing, hunting, gathering, and water rights on the Klamath Reservation, which was originally about 1 million acres. The Klamath Tribes have 3,700 enrolled tribal members that primarily reside in the Upper Klamath River Basin. The tribal headquarters are in the town of Chiloquin, Klamath County, Oregon. The Klamath Tribes have re-acquired about 600 acres of their former reservation, and the United States (mainly the U.S. Forest Service) holds title to approximately 70 percent of the former reservation lands.

In 1954, as part of a nationwide effort to assimilate American Indian tribes into the cultural and economic mainstream, the Federal government initiated the Klamath Termination Act (25 USC §564, et seq.). Termination ended the Klamath Tribes' status as a federally recognized tribe, resulted in the loss of the Tribes' ownership of the Klamath Reservation, dissolved the federally recognized tribal government, and nullified most Federal fiduciary responsibilities to the tribal community. The social, economic, and cultural implications of termination were significant and are generally viewed as dire by the Klamath Tribes' members.

Shortly after termination, the United States divided the reservation into large timber tracts, intending to sell them to private timber companies. However, only one tract was sold, and in 1961 the United States government purchased the tracts of the former Klamath Reservation. These tracts became part of the Winema National Forest under the jurisdiction of the U.S. Forest Service. The balance of the reservation was placed in a private trust for tribal members who retained an interest in the tribal lands. In 1973, these remaining Indian lands were also condemned and purchased by the government and added to the Winema National Forest.

On August 26, 1986, the Klamath Tribes officially regained Federal recognition under the Klamath Restoration Act (25 USC §566, et seq.). However, ownership of their former reservation was not granted and tribal efforts to regain a land base have continued without interruption since that time. Indeed, court cases in the 1970s reaffirmed Klamath Tribal fishing, hunting, gathering, and water rights originally reserved by the *Treaty with the Klamath, Etc. 1864* (Kappler 1904). These rights are currently recognized regardless of the Klamath Tribes' relatively small land base subsequent to termination. Exercise of these trust rights has created fishing, hunting and gathering access problems across private and public property for members of the Klamath Tribes.

Historical and Current Effects

The construction of Copco 1 Dam, completed in 1917, blocked anadromous fish runs into the upper Klamath River Basin and disrupted the Klamath Tribes' access to anadromous fish. Other major fisheries available to the Klamath Tribes are resident salmonids ("trout") and catostomids (suckers). The catostomid fishery consisted primarily of *c'waam* (Lost River sucker) and *koptu* (shortnose

sucker) until the tribes closed their fishery in 1986 to protect it in the face of severe population declines. These two species of suckers have been listed as endangered under the ESA since 1988.

The Klamath Tribes retain a right to instream water quantities in off-reservation locations at levels that are sufficient to support fishing and other harvest rights on former reservation lands, as affirmed in the 9th Circuit Court of Appeals' decision in *United States v. Adair*, 723 F.2d 1394. The magnitude of this water right is being adjudicated by the State of Oregon and a ruling is expected by December 2012. If there is a Negative Secretarial Determination the Klamath Tribes would have the option to exercise this water right, which could have large implications on water deliveries in the upper basin depending on the outcome of the adjudication.

A number of ritual traditions of the Klamath Tribes depend on access to clean water from natural sources for ritual purification of people, places, and objects, and in rituals associated with drought abatement and other environmentally restorative activities. Although tribal members sometimes acquire water for these purposes from the Klamath River canyon area, this water is viewed as being inappropriate for ritual uses because of its temperature, algae development, and other issues of water quality.

In 1907, prior to dam construction, elders of the Klamath Tribe and non-Indian settlers in the area state that salmon were present as far upstream from Klamath Lake as the Sprague and Williamson Rivers. Anthropologist Leslie Spier also reports that salmon "ascend all the rivers leading from Klamath Lake...going as far up Sprague River as Yainax, but are stopped by the falls below the outlet of Klamath marsh." This historical report is corroborated by more recent studies (Hamilton *et al.*, 2005; Butler *et al.*, 2010). Salmon and steelhead have not been present in the area upstream of the Klamath River dams in over approximately 90 years.

Salmon, steelhead, suckers, lampreys, and redband trout continue to be symbolically and culturally important to members of the Klamath Tribes. Tribal members continue to use traditional salmon and steelhead fishing stations for subsistence purposes, ceremonial activities, historical memorialization, and instruction of children on tribal history and culture. Resources that were once harvested secondarily to the salmon and steelhead harvest have now become the focus of subsistence activity at these stations, and tribal members still use certain historical campsites at these stations during subsistence, social, and ceremonial activities. In addition to ritual activities "to bring back the salmon," the Klamath Tribes government continues to explore legal and administrative options to achieve the same goal.

Klamath Tribes Adjudication

The Klamath Tribes retain a right to instream water quantities in areas above the Klamath Hydroelectric Project in Oregon at levels that are sufficient to support fishing and other harvest rights on former reservation lands, as affirmed in the 9th Circuit Court of Appeals' decision in United States v. Adair, 723 F.2d 1394. The magnitude of this water right is being adjudicated by the State of Oregon and an initial ruling is expected by December 2012. If there is a Negative Secretarial Determination, the United States Government, the Klamath Project Water Users (as defined in the KBRA), and the Klamath Tribes have a year to conclude a new agreement that would maintain the water rights forbearance arrangements under the KBRA. If those talks are unsuccessful, the Klamath Tribes would have the option under the KBRA to exercise their water rights, which could have a large implication on water deliveries in the upper basin depending on the outcome of the

Unemployment in The Klamath Tribes

The unemployment rate for the Klamath Tribes was 21 percent in 2005 for Indians in the BIA service area, or Klamath County (BIA 2005). Based on 2000 Census data that appears to be unchanged through 2009, between 30 and 40 percent of the Indian population in Chiloquin, surrounding areas, and Klamath County (the BIA service area) was in poverty, a rate two to three times higher than the general population in the same areas. Unemployment was about 22 percent for the Indian population in Chiloquin; this was three times higher than the total population percentage in Klamath County and roughly five times higher than the State of Oregon. (Reclamation 2011k)

Figure 4.4.2-5: Fire and blessings at Klamath Tribes return of the c'waam Ceremony. Once an important part of the Klamath Tribes' diet, the c'waam (Lost River sucker) fishery was closed in 1986 due to severe population declines and was listed as endangered under the ESA in 1988.

Figure 4.4.2-6: The Klamath Tribes taking part in a traditional Powwow. Improved fish abundance with dam removal would strengthen ceremonial practice improving tribal identity.

Potential Effects of Dam Removal

As described above, hydrology and water quality throughout the Klamath River are important for supporting aquatic ecosystems and the fishery as well as the many cultural activities of the Klamath Tribes. These cultural activities include conducting traditional bathing ceremonies, participating in tribal fishing rights, and valuing the aesthetic qualities of the river.

Currently, algae are a major problem associated with the use of the Klamath River by the Klamath Tribes. Algae degrade water for recreational and ceremonial uses, and can produce toxins hazardous to fish and humans. Removal of the dams and reservoirs along the Klamath River and implementation of the KBRA would provide for a new fishing site downstream of Iron Gate Dam for the Klamath Tribes; restoration of sucker and fish passage to Upper Klamath Lake; improvements in water quality; and would allow the Klamath Tribes to fish, conduct traditional bathing ceremonies, and enjoy the aesthetic qualities of the river. Implementation of the KBRA would also provide funding to the Klamath Tribes for restoration projects, purchase of the Mazama Tree Farm property, and could create jobs for tribal members.

Chinook salmon, coho salmon, steelhead, suckers, and Pacific lamprey have been the main historic food sources for the Klamath Tribes. The removal of dams on the Klamath River and implementation of the KBRA would likely increase these fish populations over time, which would benefit the Klamath Tribes by facilitating the continuation of traditional ceremonies and practices and providing the opportunity to improve their standard of living through more stable subsistence fisheries. The Klamath Tribes assert that an increase in fish could improve the health of tribal members by increasing salmon in their diets; providing employment; reducing social problems; and, improving tribal unity by reducing the number of tribal members leaving the reservation.

Karuk Tribe

The Karuk Tribe is a federally recognized tribe. The Tribe's ancestral territory was about 1.4 million acres. Today, the Karuk Tribe owns about 851 acres of small, widely scattered parcels in trust status along the middle section of the Klamath River, downstream of Iron Gate Dam. The Karuk Tribe had 3,427 enrolled members in 2005. Origins of the Federal government's relationship with the Karuk Tribe are found in the negotiation of treaties between the United States and the various tribes of California in 1850. These treaties were never ratified by Congress; consequently, DOI does not currently recognize a Karuk Tribe right to a salmonid fishery or instream water rights. The Karuk Tribe has a California State recognized fishing right for one fishing location.

The Karuk Tribe is known as the 'Fix the World People' due to their central role in the regional annual Pikiawish or World Renewal Ceremonies. Pikiawish traditionally began with the First Salmon Ceremony in the spring, followed by additional ceremonies in the summer and fall. The First Salmon Ceremony, which marked the arrival of spring Chinook salmon, was conducted downstream of the mouth of the Salmon River. The ceremony signaled the end of the winter steelhead season and the beginning of the salmon season. Although the Karuk Tribe has experienced a cultural revival and has been able to revive most

ceremonies, the Karuk Tribe has not been able to reinitiate the First Salmon Ceremony at the correct time of year because of generally low numbers of spring-run Chinook salmon.

Historical and Current Effects

The DOI does not currently recognize a right to a tribal share of the salmonid fishery. Any fishing and concomitant water rights to which the Karuk Tribe may be entitled have not yet been determined. Tribal representatives assert that a Klamath River fishery for ceremonial use and subsistence living should be considered a Karuk trust resource. Regardless of this situation, the Karuk Tribe believes that Klamath River Dam operations have degraded the fishery and water quality along the river.

The Karuk Tribe does possess a fishery at Ishi Pishi Falls recognized by the State of California. The Karuk still fish for salmon at Ishi Pishi Falls using traditional dip nets (see Figure 4.4.2-9). Karuk also continue to perform *Pikiawish*, World Renewal Ceremonies, which they have done for time immemorial. Recently, the ceremonies have been altered, not because of the lack of knowledge, but because of the lack of Spring Chinook that were abundantly available for the ceremony prior to the construction of the Klamath River dams. Resources affected by the construction of the dams range from food for ceremonial participants to riparian plants necessary to make ceremonial regalia.

Potential Effects of Dam Removal

The Karuk Tribe has a state fishing right for dip-net fishing at Ishi Pishi Falls in the Klamath River. This fishery population is expected to increase and water quality is expected to improve as a result of removing the Klamath River dams. The Karuk Tribe asserts that removal of the dams would benefit their system of cultural values by returning the Klamath River ecosystem to one that more closely resembles the river ecosystem in Karuk ceremonies and creation stories. The Karuk Tribe also would have more opportunities to conduct traditional ceremonies and practices.

Currently, algae are a major problem associated with the use of the Klamath River by the Karuk Tribe. Algae degrade water for subsistence and ceremonial uses, and can produce toxins hazardous to fish and humans. Removal of the dams and reservoirs along the Klamath River and implementation of the KBRA would improve water quality and allow the Karuk Tribe to fish, conduct traditional bathing ceremonies, and enjoy the aesthetic qualities of the river. The KBRA would also provide funding to the Karuk Tribe for restoration projects and could create jobs for tribal members.

Chinook salmon, coho salmon, steelhead, green sturgeon, and Pacific lamprey have been the main food sources for the Karuk Tribe. The removal of dams on the Klamath River should increase anadromous fish populations over time, which would benefit the Karuk Tribe by facilitating the continuation of traditional ceremonies and practices and providing the opportunity to improve their standard of living by increasing their subsistence fishing opportunities. It is the Tribe's belief that an increase in fish could improve the overall health of tribal members by increasing the salmon in their diets; providing jobs;

Figure 4.4.2-7: Members of the Karuk Tribes still use traditional dip net fishing at Ishi Pishi Falls on the Klamath River (Photo Courtesy of the Karuk Tribe)

Unemployment in the Karuk Tribe

According to a 2005 BIA Labor Force Report, unemployment for the Karuk area Indian population was 63 percent. Census 2000 data for the Karuk Reservation showed an unemployment rate that was about two to three times that of the general population in Siskiyou County with greater disparities for Indian area populations. The Karuk Reservation had the lowest per capita income of all surrounding areas, at half or less than that of other areas, particularly for the Indian population. More than half the population was in poverty in 2000, and the 2009 estimate has increased to about 60 percent, and previous Tribal surveys have placed it as high as 80 percent. The Census 2009 estimates for Reservation unemployment indicate rates that could have increased to about three to five times higher than surrounding area general population rates. (Reclamation 2011h)

Figure 4.4.2-8: Traditional Karuk tribal smokehouse. Greater fisheries abundance would bolster transmission of traditional knowledge to youth, including the important practice of giving fish to elders.

decreasing social problems associated with the loss of the tribe's historical environment; and improving the sense of tribal unity by reducing the number of tribal members leaving the reservation.

Quartz Valley Indian Community

The Quartz Valley Indian Community is a federally recognized tribe with an enrollment of 222 members in 2005. The Quartz Valley Indian Reservation is in Siskiyou County near the community of Fort Jones. Most of the Quartz Valley Indian Reservation tribal members are descendants of people of Karuk ancestry, although a few tribal members are also of Shasta ancestry. Their cultural traditions are similar to those described for the Karuk Tribe, and they occasionally trade various items to the Karuk Tribe for salmon.

Historical and Current Effects

The Quartz Valley Indian Community does not have a reserved legal right to the Klamath River fishery. The tribe is not reliant on Klamath River water, nor does it retain Klamath River reserved water rights. The tribe's land base is not along the Klamath River but on a tributary to the Scott River, which is a tributary to the Klamath. No effects on Quartz Valley trust resources or rights were identified by the Tribe as a result of the Klamath River dams. Members of the Quartz Valley Indian Community do not believe they would experience social, cultural, or economic impacts from dam removal.

Potential Effects of Dam Removal

There are no direct trust resources, tribal rights, or other resources traditionally used by the Quartz Valley Indian Community associated with water or fishes that are affected by removal of the Klamath River dams. However, the Quartz Valley Indian Community does trade with the Karuk Tribe for salmon, and dam removal would improve Karuk Tribe fishing opportunities, which in turn would support the Quartz Valley Tribe.

Hoopa Valley Tribe

The Hoopa Valley Indian Reservation is in the northeastern corner of Humboldt County in northern California, approximately 45 miles from the Pacific Ocean. The reservation, known as "the 12-mile square," is laid out geometrically with sides approximately 12 miles in length for a total of nearly 144 square miles. The Reservation is approximately 90,000 acres in size and is the largest reservation in California. The Reservation encompasses a portion of Hupa aboriginal territory, which extends to the south and east of the current reservation, and is bisected by the Trinity River. A small length of the northern border of the Reservation includes an approximately 0.3-mile stretch of the Klamath River called Saints Rest Bar.

Hupa people remained secluded in their remote valley until the middle of the 19th century. Like other Klamath Basin Tribes, the discovery of gold in the area and an influx of non-Indians brought competition for land and resources. However, unlike the other Klamath Basin Tribes, the Hupa people experienced less historic cultural and social disruption resulting from Euroamerican contact.

Hupa Elder, Byron Nelson, states:

Though many Hupa and Yurok still hold to traditional beliefs and engage in certain time-honored practices such as shamanism and basketry, the decline of the rivers' health, the center of their culture and spirituality, has led to a loss of self-esteem, an increase in cynicism, and has greatly hurt the cohesiveness and health of these tribal communities. The rivers are the focalizing element of the society; with their loss, it seems much of the hope has also been lost.

A lack of fish has resulted in the scaling down or even cancellation of ceremonies. The continual practice of ceremonies represents an important means for keeping tribal members who live off the reservations connected to their culture and families. However, without enough salmon, many do not come back; and the planning of ceremonies, once a time to appreciate nature's abundance and of spiritual celebration, often brings significant anxiety to the region's native peoples.

¹ Hoopa is used when referring to the name of the Tribe, and Hupa is used when referring to the people, place, or culture.

Indeed, the Hupa were able to continue a traditional lifestyle relatively uninterrupted by the influx of Euroamericans into the area.

In the mid-1800s, California limited Indian reservations to a handful of 'military reservations,' one of which was the Hoopa Valley Reservation. The boundaries of the Hoopa Valley Indian Reservation were established by Executive Order of President Grant on June 23, 1876 (called Executive Order of June 23, 1876), pursuant to the Congressional Act of April 8, 1864 (13 Stat. 39). The reservation was expanded by Executive Order in 1891 to connect the Klamath River Reservation with the Hoopa Valley Reservation. From 1891 through 1988 the Hoopa Valley Reservation was composed of the Hoopa Valley "12-mile square," the extension of the reservation along the Klamath River, and the original Klamath River Reservation. This area encompassed most of the Yurok population that resides in the current Yurok Reservation. Confirmation of the sovereignty by the Hoopa Tribe of the Hoopa Valley Indian Reservation (the original square reservation area) came on October 31, 1988, when President Reagan signed Public Law 100-580, the Hoopa-Yurok Settlement Act, again separating the reservation.

In the early 1960s, the fish runs of the Trinity River had declined following the construction of the Central Valley Project's Trinity River division. The Trinity River division not only eliminated 109 miles of important salmon habitat but also exported as much as 90 percent of the water flowing into the Trinity River to the Sacramento River at Lewiston. Congress enacted legislation directing restoration of fish populations in the Trinity River, including P.L. 102-575, § 3406(b)(23), which directed action "to meet Federal trust responsibilities to protect the fishery resources of the Hoopa Valley Tribe." A Record of Decision in 2000 governs the Trinity River Restoration Program, but the success of restoration is affected by a lack of full funding for restoration actions, low water flows, and conditions conducive to the development and spread of fish disease (particularly in drought years) in the 42-mile reach of the Klamath River that fish traverse to reach the Trinity River. Consequently, the Trinity River and its fishery are affected by Klamath River conditions.

The Hoopa Valley Tribal members continue to conduct many of their traditional religious ceremonies in spite of issues related to the health of the Klamath and Trinity Rivers. Two major ceremonies are the White Deerskin Dance and the Jump Dance that celebrate world renewal. The White Deerskin Dance ceremony is conducted at village sites and resting places near the Trinity River. An unhealthy river system affects the ability of the Hupa to conduct their religious ceremonies. The Hupa claim that as the river's health has declined, their ability to practice these ceremonies and their overall cultural well-being has also declined.

Historical and Current Effects

During the tribal consultations for the removal of the Klamath River dams, the Hoopa Valley Tribe stated that the Tribal Trust section of the *Trinity River Mainstem Fishery Restoration Environmental Impact Statement/Environmental Impact Report* prepared in 2000 adequately represented the effects on Hoopa trust resources (water, fish, and related cultural values) (DOI 2000). Current

Unemployment in the Hoopa Valley Tribe

There were 2,930 enrolled members of the Hoopa Valley Indian Tribe in 2010 and 2,633 people were counted in the 2000 Census on the Hoopa Reservation. Unemployment on the Hoopa Reservation was about three times the county and state rates, and the percentage in poverty was double that of the state, with the largest disparities between the Indian and general population. (Reclamation 2011d)

operations of the Four Facilities are more likely to affect resources of the Klamath River, but Klamath River water quality affects Hoopa Valley Tribe trust rights primarily by affecting fish destined for the Trinity River. These fish must pass through approximately 42 miles of the Klamath River before entering the Trinity River and traveling through the Hoopa Valley and the Hoopa Valley Indian Reservation.

Potential Effects of Dam Removal

The Hoopa Valley Tribe has a reserved right to water in the Klamath River to support the harvest of fish required to maintain a moderate standard of living. The tribe also has subsistence and ceremonial fisheries.

Chinook salmon, coho salmon, steelhead, green sturgeon, and Pacific lamprey have been the main food sources for the Hoopa Valley Tribe. The removal of dams on the Klamath River could increase anadromous fish populations over time, which could benefit the Hoopa Valley Tribe by facilitating their participation in the traditional ceremonies and practices that they share with the other tribes along the Klamath River.

Yurok Tribe

The federally recognized Yurok Tribe is the largest tribe in California, with more than 5,600 members. The Yurok Reservation consists of about 57,000 acres within the approximately 350,000 acres of their ancestral territory along the lower Klamath River and 50 miles of Pacific coastline near the Klamath River estuary. The Yurok Reservation extends from the estuary up the Klamath River for a distance of about 45 miles and extending inland for about one mile on both sides of the river. Yurok Tribal fishing rights on the Klamath River are well established as a matter of Federal law. The Yurok Tribe has a reserved right to water in the Klamath River to support the harvest of fish required to maintain a moderate standard of living. The tribe also has subsistence and ceremonial fisheries. In addition to fish, the Yurok Tribe has commercial and subsistence fishing rights.

In the 1850s, when conflicts with gold miners and settlers ensued, treaties were negotiated, and reservation lands were selected Federal government's recognition of the central importance of rivers and fish to the Indian people of the Klamath-Trinity region is exemplified by the very shape and location of the lands first set aside for their reservations. The Secretary of the Interior's instructions at the time were, "to select these reservations from such tracts of land adapted as to soil, climate, water privileges, and timber, to the comfortable and permanent accommodation of the Indians".

Origins of the Federal government's relationship with the Yurok Tribe are found in the negotiation of 18 treaties between the United States and the various tribes of California between 1850 and 1852, although these treaties were never ratified by Congress. Subsequently, California limited Indian reservations to a handful of "military reservations," one of which was the Klamath River Reservation (not to be confused with the Klamath Reservation in Oregon), created in 1855 by Executive Order. It was a strip of territory that began at the

Yurok Traditional Culture

There are several rocks along the Klamath River etched with petroglyphs that provide instructions from the Creator to the Yurok. One message is a warning that when the rivers stop flowing the Yurok world will end. Yurok elders have prophesied that the manipulation of the river and its flows by damming is the beginning of the end for the Yurok.

Pacific Ocean and extended one mile in width on each side of the Klamath River for a distance of about 20 miles.

The Hoopa Valley Reservation on the Trinity River was created in 1864 for the Hoopa Tribe. In 1891 the Klamath Reservation and Hoopa Valley Reservation were combined as a result of President Harrison extending the Hoopa Valley Reservation to the Pacific Ocean. This action effectively required that two culturally distinct tribes occupy the same reservation, the Hoopa Valley Indian Reservation. From the 1860s to the General Allotment Act of 1887, the Yurok people lost much of their land to homesteading and other development. In the late 1800s and early 1900s, the fisheries were exploited by non-Indians who operated canneries that soon resulted in over harvesting and a complete closure of the lower Klamath fishery by the California Department of Fish and Game in 1933. For many years, the Yurok and other Indians were prohibited from fishing for subsistence or commercial purposes. Ocean fisheries were never closed, and the recreational fishery was restored for non-Indians in subsequent years, but the practice of subsistence and commercial fishing by Yurok people was prohibited. Yurok people continued to fish the Klamath River as they always had, although the activity was deemed by state regulators as illegal.

By the 1970s, the fishing ban for Yuroks and other Indians created conflicts that escalated when a Yurok fisherman, Raymond Mattz, was arrested and decided to challenge state jurisdiction over Yurok fishing rights. The result was a legal battle that was brought before the U.S. Supreme Court and resulted in a 1973 ruling that reaffirmed Yurok fishing rights (Mattz v. Arnett, 412 U.S. 481). In 1977, the lower Klamath River was reopened for gill net subsistence and commercial fishing by Indians. In 1978, the DOI placed a "Conservation Moratorium" on the Indian commercial fishery, and it was closed until 1987 when the moratorium was lifted due to new allocation agreements and predictions of an increase in salmon. In 1988, the Hoopa-Yurok Settlement Act divided the Hoopa Valley Reservation into two separate Hoopa and Yurok Reservations and allowed the Yurok to govern themselves through the Yurok Tribal Government, and a Tribal constitution that was adopted in 1993.

Since 1990, tribal commercial harvests have been marginal and have not provided a comfortable standard of living as originally envisioned for the Yurok in the Hoopa-Yurok Settlement Act. The 9th Circuit Court of Appeals confirmed that the Executive Orders creating the Yurok Reservation vested the Yurok Tribe with "federally reserved fishing rights." Parravano v. Masten, 70 F.3d 539, 541 (9th Cir. 1995), cert, denied, 518 U.S. 1016 (1996). The same court in 1981 observed that the salmon fishery of the Yurok Tribe is "not much less necessary to the existence of the Indians than the atmosphere they breathed" (Blake v. Arnett, supra, at 909). In 1993, the Solicitor of the DOI determined that the Yurok and Hoopa Valley Tribes are entitled to a sufficient quantity of fish to support a moderate standard of living, or 50 percent of the Klamath fishery harvest in any given year, whichever is less. However, current low numbers of fish have limited tribal subsistence fishing and commercial operations. This situation has affected the economy of the tribe, and unemployment among the Yurok tribal members is high (Sloan 2011).

In 1855 when speaking of the Yurok, Indian Agent S. Whipple noted that: "The river is abundantly supplied with Salmon. A fine large fish quite easily taken by the Indians and which is very properly regarded by the Indian as his staff of life."

Unemployment in the Yurok Tribe

The BIA Labor Force Report reported Yurok service area Indian unemployment at 74 percent in 2005. The 2000 Census data showed 12.9 percent unemployed on the Yurok Reservation, and the rate was higher for the Indian population at 17.2. Based on Census data, the Yurok Reservation had some of the highest unemployment rates in the area, with the exception of the town of Klamath and Klamath area; however, many Yurok and some Resighini Tribal members live in and around the town of Klamath. The Yurok Reservation and surrounding area unemployment rates were about double those of Del Norte and Humboldt counties, and about three times the California rate. Similarly, Yurok Reservation poverty rates were higher than surrounding areas, and in most cases were double other rates with greater disparities for Indian area populations. The Yurok Tribe conducted research that indicates that poverty rates are much higher, and estimated that food insecurity among its Tribal members living throughout the ancestral territory is about three times the rates of the counties (Sloan2011and (Reclamation 2011o).

The Yurok participate in traditional dances and ceremonies along the banks of the Klamath River and are intricately tied to it. Consequently, changes to the river affect the ceremonial and traditional cultural practices of the Yurok. For example, the Yurok people are so attuned to the river that they have a name for each characteristic of the water's movement and the Yurok word for salmon, nepu i, translates into "that which we eat." The Yurok continue to occupy village sites along the Klamath and lower Trinity Rivers where they have lived, fished, gathered, prayed, and buried their dead for centuries.

Water quality and spring-run salmon in the Klamath River are vital in Yurok ceremonies. In early spring, the first salmon to enter the Klamath River was speared and ritually eaten by Yurok medicine men, traditionally signifying the beginning of the fishing season for the Yurok and all other tribes upriver Salmon are ritually managed to ensure that Yurok and upriver tribes have sufficient supplies of fish and that enough fish remain to repopulate the fishery. A strong belief still prevails that without the proper ceremonies, the salmon will not return in sufficient numbers.

The Yurok have many ceremonies in common with the Hupa and Karuk, such as the Jump Ceremony, the White Deerskin Ceremony, and the Boat Dance Ceremony. These ceremonies require the proper river setting and the availability of river resources. Baskets made of plant materials collected at the water's edge are used to hold food and other ceremonial items. Acorns are cooked in the baskets and converted into mush using hot rocks gathered from specific river bars. Regalia that adorn the dancers is made from various plant and animal products obtained from the riverine environment. Ceremonial bathing in the river and its tributary creeks and listening to the sounds of the water are also requirements for some ceremonies and their participants. Today some ceremonial participants arrive by car, but many more still arrive by boat, which is the traditional means of transportation. Ceremonial hosts are expected to feed participants with salmon; to fail to provide such traditional food is considered an insult.

The Yurok Tribe and its culture are intertwined with the Klamath River. A deceased tribal member's last worldly journey is a boat ride upriver. Several rocks in the river are etched with rare petroglyphs that offer instructions from the Creator to the Yurok people. One such message is a warning that when the rivers stop flowing it will mark the end of the Yurok world; some elders have prophesied that the manipulation of flows by damming represents the beginning of the end for the Yurok.

Historical and Current Effects

The Yurok Tribe has a reserved right to water in the Klamath River to support the harvest of fish that the Yurok require to maintain a moderate standard of living. The tribe also has subsistence and ceremonial fisheries. However, the Yurok Tribe asserts that trust resources are broader than fishing and water rights. The additional trust resources asserted are land, wildlife, minerals, and timber. The Yurok Tribe's assertion of trust resources was coupled with the assertion that the United States has a trust responsibility to protect these resources and ensure that they are managed for the beneficial use of the Tribe

and its membership. In addition, it was also stressed during recent government-to-government consultation that the Federal government has other trust responsibilities to the Yurok in the areas of social welfare, education, and health.

Hydrology and water quality throughout the Klamath River are important for supporting the aquatic ecosystems that support the fishery. Despite degradation of the Klamath River ecosystem during the late 19th and first half of the 20th centuries, the Yurok persist in their traditional reliance on the river and its resources. Many of today's older Yurok grew up with a strong physical connection to the river and a great appreciation for the traditions and riverine way of life of their ancestors. Yurok continue to have a strong connection to the river. It has become increasingly difficult, however, for the tribe to continue to practice its ceremonies and religion; to gather vegetation for baskets, food, medicines, and other purposes; and to obtain a sufficient quantity of fish for subsistence and ceremonial activity. Regardless, Klamath River fish caught by the Yurok tribal membership continue to be an important component of their diets. However, the Yurok associate the reduction in their intake of salmon with many current physical and emotional conditions experienced by the tribal members, such as increased heart disease, strokes, diabetes, obesity, and depression.

Potential Effects of Dam Removal

Currently, algae are a major problem associated with the use of the Klamath River by the Yurok Tribe. Algae clogs traditional fishing nets, degrades water for recreational and ceremonial uses, and can produce toxins hazardous to fish and humans. The presence of algae in the river regularly requires the posting of warnings regarding use of the river and its water. The Tribe believes that removal of the dams and reservoirs along the Klamath River and implementation of the KBRA would improve water quality, which would allow the Yurok Tribe to fish, conduct traditional bathing ceremonies, and enjoy the aesthetic qualities of the river. They also envision the KBRA as potentially providing funding for restoration projects that could create jobs for tribal members.

Chinook salmon, coho salmon, steelhead, green sturgeon, and Pacific lamprey have been the main food sources for the Yurok. By removing the Klamath River dams and increasing anadromous fish populations over time, the Yurok Tribe could have a more stable commercial and subsistence fisheries that could improve their standard of living. The Yurok Tribe also believes that an increase of fish in a healthy river could improve the overall health of tribal members by increasing the salmon in their diet, facilitate the practice of their traditional ceremonies, and increase opportunities for intergenerational transmission of traditional knowledge.

Resighini Rancheria

The Resighini Rancheria gained Federal recognition in 1975. Tribal members are Yurok Indians affiliated with the Yurok Coast Indian Community. The Resighini Rancheria has 132 enrolled members. The Rancheria land, which was originally acquired in 1938 by the Federal government, encompasses 239 acres in Del Norte County, California. The Rancheria is on the southern banks of the Klamath

Unemployment in the Resighini Rancheria

Although Census 2000 poverty percentages were not available for the Rancheria (only 36 people were counted on the Rancheria), unemployment was 20 percent based on Census data and 60 percent reported in the 2005 BIA Labor Force Report which is at least three to four times the rate of the town of Klamath (which is also relatively high), surrounding areas, and Del Norte County. The Resighini Rancheria had the highest unemployment rates and lowest per capita income in the area, which indicates that the Rancheria's poverty rates are also likely much higher than surrounding areas and the county. Because the Rancheria is a relatively small land base, most members live in Klamath and surrounding areas or otherwise off-reservation, and Indian unemployment and per capita income disparities for the surrounding areas are about twice that of the general population (Reclamation 2011).

River several miles inland from its mouth and is completely surrounded by the Yurok Reservation. The DOI does not currently recognize a Rancheria right to a tribal share of the salmonid fishery. Any fishing and concomitant water rights to which the Resighini Rancheria may be entitled have not yet been determined.

The Rancheria has surface and groundwater rights by virtue of the trust land status of the Rancheria. A 1974 BIA water study conducted for the reservation determined that the Resighini Rancheria has water rights, senior to other claims after 1939, to water from the two creeks that traverse the Rancheria.

Land for the Resighini Rancheria was deeded in trust by the Secretary of the Interior in 1938 to "provide for the protection of the soil, the proper development of the land, and the equitable distribution of benefits from the land." The lands, mostly in the floodplain of the Klamath River, were productive farm and dairy operations and Indian agents hoped Tribal members would continue farming the land. However, Resighini Rancheria members are Yurok fishing people who continued to engage in subsistence fishing as a means of economic and subsistence support. Resighini Rancheria tribal members assert that a reduction in the fishery affects the local economy, general tribal health, cultural well-being, and employment.

Figure 4.4.2-9: Resigmini Rancheria members eel fishing at the mouth of the Klamath. An important part of traditional tribal diet is Pacific lamprey (eels). Tribes have reported eel catch reductions down by 98 percent from historic level.

Historical and Current Effects

The Resighini Rancheria asserts that Rancheria trust resources are gravel (minerals); water as it relates to groundwater for domestic, agricultural, and recreational (campground) uses; riparian plants; wetlands; fish; land; and wildlife. They also asserted that the United States has a trust responsibility to protect these resources and ensure that they are managed for the beneficial use of the tribe and its membership. In addition, tribal representatives stated during recent government-to-government consultation that the Federal government has trust responsibilities in the areas of social welfare, education, and health. The Resighini Rancheria tribal members believe that the Klamath River dams are responsible for erosion of lands, depletion of gravel extraction beds, low fish returns, degraded water quality, a lack of tribal economic stability, a degradation of overall health of tribal members due to a lack of fish in their diet, and a reduction of overall cultural well being that is causing members to leave the Rancheria.

In general, the Klamath River dams have reduced the ability of Rancheria members to engage in traditional and contemporary subsistence and religious practices. For example, limited access to traditional foods and basket-making materials on which these practices are based limits the opportunities of the Resighini Rancheria tribal members to engage in their traditional cultural practices.

Potential Effects of Dam Removal

Currently, algae are a major problem associated with the use of the Klamath River by the Resighini Rancheria. Algae degrade water for recreational and ceremonial uses, and can produce toxins hazardous to fish and humans. Removal of the dams and reservoirs along the Klamath River and implementation of the KBRA would improve water quality and allow the

Resighini Rancheria to conduct traditional bathing ceremonies, enjoy the aesthetic qualities of the river, and engage in other traditional cultural practices. If the Resighini Rancheria became signatories to the KBRA, there may be opportunities for funding and jobs as restoration actions were undertaken.

4.4.2.3 Conclusions

Benefits of Dam Removal and KBRA

Dam removal and implementation of the KBRA would help protect trust resources and address various social, economic, cultural, and health problems identified by the tribes in the Klamath Basin. Dam removal would have beneficial effects on water quality, fisheries, terrestrial resources, and traditional cultural practices. In addition, removal of the dams would enhance the ability of Indian tribes in the Klamath Basin to conduct traditional ceremonies and other traditional practices. Implementation of the KBRA would provide funds to the signatory tribes for restoration projects that would create jobs for tribal members.

The KBRA is intended to restore and sustain fish production in the Klamath Basin, establish reliable water and power supplies, and contribute to public welfare and sustainability of all Klamath Basin communities. Programs under the KBRA are grouped under fisheries programs, water and power programs, and county and Indian tribal programs.

The fisheries programs include an extensive habitat restoration program throughout the Klamath Basin, fisheries reintroduction programs, fisheries monitoring programs, and actions intended to increase flows and reliability of instream water in the Klamath River and its tributaries directly effecting Klamath Basin tribes.

County and Indian tribal programs include economic development programs (see Section 4.4.13, *Durable Solutions for Local Communities*) for local governments and Indian tribes, regulatory provisions to minimize impacts on communities in the Klamath Basin, and Indian tribal fisheries and natural resource conservation management programs. See Section 1.2.7 for further information on the KBRA.

SECTION 4 • Secretarial Determination Findings of Technical Studies 4.4.2 Tribal

This page intentionally left blank.

4.4.3 Prehistoric and Historic Cultural Resources

4.4.3.1 Prehistoric Resources

The Indian tribes occupying the Klamath Basin assert that they have occupied the area for time immemorial. Indeed, there is archaeological evidence documenting human occupation in the Klamath Basin as early as 12,000 years ago. Resources in the Klamath Basin, particularly salmon, as well as the distinctive geography of the Klamath River are integral parts of Indian tribal history and culture. This relationship and history is seen in the approximately 650 recorded sites associated with Indian tribal occupation as well as the historical and current-day use of the Klamath River and the area immediately surrounding it.

4.4.3.2 Historic Resources

Permanent Euro-American settlement in the Klamath Basin began in the 1850s as gold prospectors entered the region. Mining proved of limited importance to the development of the region, but fertile soil, level terrain, and plentiful water made the area favorable for agriculture and ranching.

Available agriculture lands increased in the region as a result of the Reclamation Act of 1902. The act allowed for new homesteading and agriculture on lands "reclaimed" from wetlands. Increased demand for arable lands led to initiation of Reclamation's Klamath Project in 1905. Seven dams, including Link River dam, hundreds of miles of irrigation ditches and canals, and pumping plants were built under the management of the Reclamation.

Initial hydroelectric development began in the Klamath Basin in 1891 to provide electricity to Yreka. Four years later, the Klamath Falls Light & Water company built a generating facility on the east bank of the Link River, known as East Side Powerhouse, to supply power to Klamath Falls. These ventures soon attracted competitors. By 1912, the California-Oregon Power Company (Copco) consolidated hydroelectric development in the region. Subsequently, Copco built hydroelectric facilities Copco 1 and Copco 2 in 1918 and 1925, respectively. After World War II, regional population growth prompted new hydroelectric power expansion such as Copco's Big Bend (now J.C. Boyle) (1958) and Iron Gate (1962) developments. While Iron Gate was under construction, Copco was merged with Pacific Power & Light that became PacifiCorp, which manages the Klamath Hydroelectric Project.

4.4.3.3 Effects of Dam Removal

There are numerous sites in the Klamath Basin associated with Indian tribal use and occupation, gold mining, logging, agriculture and ranching, and hydroelectric development. Some of these sites are either eligible for, or would likely be eligible for, inclusion on the National Register of Historic Places (as defined in 36 CFR Part 60). For example, there are currently 68 Indian tribe sites and the Klamath Hydroelectric Project (e.g., the dams and facilities associated with the hydroelectric system) that are recommended to be eligible for inclusion on the National Register of Historic Places. These sites and all the other sites in the Klamath Basin are part of the cultural and historic heritage of the area. Dam removal will affect some of these sites; consequently, consultations under

Types of Sites:

Prehistoric Sites

- Villages
- Traditional hunting and fishing sites
- Ceremonial sites
- Traditional Cultural Properties

Types of Historic Sites

- Hydroelectric facilities (e.g., dams)
- Logging facilities (e.g., sawmills)
- Agricultural and ranching facilities

Section 106 of the National Historic Preservation Act (NHPA) are being conducted and would continue, as appropriate, throughout planning and implementation of dam removal. In addition, several mitigation measures would be implemented prior to and during dam removal to identify, avoid, minimize and/or mitigate these identified as well as other currently unidentified, significant and eligible cultural resources sites.

4.4.3.4 National Historic Preservation Act Consultations

As briefly described above, DOI is consulting with the Advisory Council on Historic Preservation, the California and Oregon State Historic Preservation Officers, Indian tribes, Native American organizations, and other interested parties under Section 106 of the NHPA (implementing regulations found at 36 CFR Part 800). DOI defines the current undertaking as the potential removal of the four PacifiCorp dams which may be a result of the Secretarial Determination. As allowed under 36 CFR §800.8(c), DOI elected to utilize the NEPA process to meet Section 106 of the NHPA compliance requirements. The analysis and consultations concerning effects on historic properties is being integrated into the NEPA documentation and review process. With Federal involvement in the removal of the Four Facilities, consultations under Section 106 of the NHPA would need to continue in addition to compliance with other appropriate Federal laws including the Archaeological Resources Protection Act of 1979. In addition, applicable California and Oregon state laws regarding cultural resources, historic preservation, and burials would be followed.

4.4.4 Previous PacifiCorp Analyses of Relicensing versus Removal of the Four Facilities and Public Utility Commission Rulings

To assist the Secretary of the Interior in making a determination about whether dam removal is in the public interest, it is informative to summarize the changes that could occur in the future if relicensing of the Four Facilities was actively pursued by PacifiCorp (particularly with regard to their applications for 401 certification of their hydroelectric project under the Clean Water Act (CWA) with the States of Oregon and California) rather than removal of the Four Facilities under the KHSA with customer surcharges. Such relicensing changes would include new operational requirements for the Four Facilities, capital expenditures for fish passage (such as fish ladders and screens) and waterquality 401 certifications, and additional operational and maintenance expenses. The Federal TMT did not undertake an analysis of the costs of constructing fish ladders or obtaining 401 certification for the Four Facilities if PacifiCorp again actively pursued relicensing. The analysis summarized in this section was prepared by PacifiCorp using information developed for the FERC relicensing process (FERC 2007) as well as information developed subsequently. PacifiCorp presented their analysis to both California and Oregon Public Utilities Commissions (PUCs).

A prerequisite to the customer surcharges necessary for KHSA implementation was concurrence with PacifiCorp's analysis from the California Public Utility Commission (CPUC) and the Oregon Public Utility Commission (OPUC) that implementing the KHSA would be in the best interest of their customers and that the incremental increases were fair and reasonable. PacifiCorp's records and testimony before both commissions compared two scenarios: (1) customers' cost and risks under the KHSA dam removal, and (2) customers' cost and risks from relicensing the Four Facilities. Both PUCs ruled that implementing the KHSA with customer surcharges would result in the best financial outcome for PacifiCorp's customers when compared to the estimated costs and future risks of relicensing the Four Facilities.

The surcharge amount negotiated in the KHSA was \$200 million (in 2020 dollars), with about \$184 million and \$16 million coming from Oregon and California PacifiCorp customers, respectively. Favorable PUC rulings were required for PacifiCorp to begin collecting surcharges in trust funds. The PUC decisions are discussed in further detail below (see Section 4.4.4.4). The following sections describe the two scenarios presented by PacifiCorp.

4.4.4.1 PacifiCorp Customer Implications with FERC Relicensing

Several aspects contribute to uncertain conditions and implications for PacifiCorp customers under a scenario where FERC issues a new long-term license to PacifiCorp for operation of the Four Facilities. As described in more detail below, the need to meet DOC and DOI mandatory conditions, and CWA

Section 401 Water Quality certification would increase the costs to PacifCorp and its customers

During the previous relicensing application filed in 2006 (see Section 1.2.5), DOC and DOI filed a series of mandatory conditions relating to fish passage (ladders and screens) at the Four Facilities and additional flows through the J.C. Boyle bypass. These mandatory conditions were subsequently challenged and upheld in a trial-type hearing (Administrative Law Judge 2006). PacifiCorp assumed in their analyses of the impacts of potential FERC relicensing that these mandatory conditions would be required in any long-term FERC license for the Four Facilities.

In addition to the mandatory conditions, and required before FERC could issue a long-term license, the States of Oregon and California must issue Water Quality certification for the Four Facilities under Section 401 of the CWA. Impounding water in the facilities' two largest reservoirs (Copco 1 and Iron Gate) contributes to water quality issues in the Klamath River including low dissolved oxygen; elevated water temperatures in the late summer and early fall; growth of algae due to high nutrient concentrations in the Klamath River; and production of algal toxin (microcystin) (see Section 4.1.1.3, Water Quality). PacifiCorp's testimony to the CPUC described that "because the CWA Section 401 Water Quality Certification process for the [Klamath Hydroelectric] Project is not yet complete, the water quality measures necessary to obtain a new [FERC] license remain highly uncertain" (Scott 2010). Neither Oregon nor California have issued CWA Section 401 Water Quality certification for the relicensing of the Hydroelectric Project. This fact creates considerable uncertainty as to the actual costs that would be required to remedy these water quality impairments, or whether the Four Facilities can be relicensed at all if these problems prove intractable. In the case that the CWA Section 401 Water Quality certifications were not issued by the states, "FERC would be unable to issue a new license, yet maintains that it has the authority to require the owner to decommission and remove the project facilities at the owner's expense" (Scott 2010).

PacifiCorp (FERC 2007) reported that implementation of the mandatory conditions as prescribed in 2006 would result in the overall loss of 24 percent of hydropower generation at the Four Facilities. PacifiCorp later updated this forecasted loss of power generation to 20 percent (Scott 2010). In PacifiCorp's 2010 testimony before the CPUC, the company estimated it would cost in excess of \$400 million (2010 dollars) to construct fish passage facilities, install other resource mitigation and recreation improvements, and remedy water-quality issues in the reservoirs and below Iron Gate Dam. In addition, the company estimated it would cost in excess of \$60 million for additional operation and maintenance expenses (Scott 2010). As described in PacifiCorp's testimony to the OPUC, there is also substantial uncertainty and financial risk in the event that the implementation of measures prescribed under a new FERC license is unsuccessful. For example, if fish passage measures are unsuccessful, new facilities, upgraded facilities, or altered hydroelectric operations could be required. The onus of responsibility for correcting any such future problems from failed attempts to meet conditions of a license would be borne solely by PacifiCorp and its customers (Brown 2010).

4.4.4.2 PacifiCorp Customer Implications with Removal of the Four Facilities

Removal of the Four Facilities, as envisioned in the KHSA, also carries cost implications for PacifiCorp and their customers. However, testimonies from PacifiCorp (Scott 2010) and OPUC (Brown 2010) described that the cost cap measure of the KHSA would limit financial risks compared to the risks possible under FERC relicensing.

In PacifiCorp's analysis of the impacts of dam removal (as defined in KHSA) to its customers, and in its testimony to the PUCs, the company assumed the Four Facilities would continue to generate power for 9 years (2011 through 2019), until dam removal began, at a mean annual generation similar to what has occurred in previous years¹. PacifiCorp assumed that customer costs and future liabilities associated with dam removal, including mitigation measures, would be capped at \$200 million (in 2020 dollars). Dam removal costs beyond the \$200 million (up to \$250 million in 2020 dollars) would be borne by California taxpayers through a bond measure or other appropriate financing mechanism. PacifiCorp and their customers would carry no residual liabilities following transfer of the Four Facilities from PacifiCorp to a DRE in or before 2020.

The cost of implementing Interim Measures under the KHSA (Identified in Appendix C and D of the KHSA) includes about \$9 million in capital costs (2010 dollars) and about \$70 million in costs characterized as operation and maintenance (O&M) (Scott 2010); these costs would be passed along to PacifiCorp customers. The majority of the capital costs relate to water quality and aquatic habitat improvements and funding for fish hatchery improvements and operations. Increased funding for hatchery programs and fish production following dam removal represents approximately half of the O&M costs. Other O&M costs include restoration actions; land and cultural resources actions; aquatic habitat enhancement; and, water quality monitoring and improvements. Many of these interim measures have cost caps; for the "interim measures that do not have a cost cap, the relative cost risk is much less than under relicensing given the extensive scope and costs associated with measures required under relicensing" (Scott 2010).

4.4.4.3 Summary of PacifiCorp Customer Implications

Table 4.4.4-1 provides a summary of PacifiCorp's analysis of the above two scenarios in terms of operational changes, costs, risks, and liabilities to their customers. FERC relicensing could cost PacifiCorp customers in excess of \$460 million over a 40-year license term. This number is compared to approximately \$251 million for removal of the Four Facilities and implementation of Interim Measures as envisioned under the KHSA (Scott 2010). Under the KHSA, PacifiCorp customers would also have a responsibility to pay for replacement power after the Four Facilities are removed. PacifiCorp's analysis submitted to the PUC's demonstrated that the KHSA resulted in less cost for PacifiCorp

Some minor modifications of power generation could occur when implementing Interim Measure 5 (Iron Gate Flow Variability, Appendix C of KHSA) and as a result of increased instream flow releases pursuant to Interim Measure 17 (Fall Creek Flow Releases, Appendix D of KHSA).

customers as compared to FERC relicensing even with the inclusion of costs associated with replacement power from the Four Facilities.

Table 4.4.4-1: Operations, costs, risks, and liabilities for FERC relicensing and for removal of the Four Facilities, Based on PacifiCorp analyses

	Operations, Risks, and Liabilities					
PacifiCorp's Future Hydroelectric Project Scenario	Operations at the Four Facilities	PacifiCorp's estimated customer costs	PacifiCorp customer risks and liabilities			
FERC Relicensing	Four Facilities continue to operate, but mandatory conditions would require construction and operation of fish passage facilities (screens and ladders), 20 percent loss of hydropower. Substantial loss of power peaking at J.C. Boyle, and requirements to remedy water temperature quality issues below Iron Gate Dam.	In excess of \$400 million in capital costs; in excess of \$60 million in O&M over a 40-year license term.	Uncapped financial liability. Costs could exceed \$460 million, particularly if fish passage proves ineffective or if water quality does not meet OR or CA state standards. FERC could require PacifiCorp to decommission the facilities if it's unable to issue a new license with costs borne by PacifiCorp customers.			
KHSA Removal of the Four Facilities	Continue operation under annual FERC licenses through 2019. Power generation would cease in January 2020 with transfer of the Four Facilities to a DRE. Interim Measures (Appendix C and D of KHSA) would be implemented between 2012 and 2020 to enhance flow variability, water quality, fish habitat/health, and fund specified research and monitoring.	\$172 million for dam removal (\$200 million in 2020 dollars). Funds would be collected with a 9-year, 2 percent (or less) surcharge on OR and CA customers. Customers would be responsible for KHSA Interim Measures at \$9 million in capital costs and \$70 million in O&M and the costs for replacement power.	Customer financial liability for dam removal is capped at \$172 million (\$200 million in 2020 dollars). Costs for Interim Measures are largely capped at \$79 million (2010 dollars).			

Sources: Scott 2010 and KHSA 2010

Note: Numbers are in 2010 base year dollars unless otherwise noted.

4.4.4.4 Public Utilities Commission Rulings on Facilities Removal under KHSA

As described above, to implement PacifiCorp customer surcharges necessary for KHSA implementation the CPUC and OPUC had to concur that implementing the KHSA would be in the best interest of PacifiCorp customers and that the incremental PacifiCorp customer increases were fair and reasonable. The following sections describe this process in front of the two PUCs.

California Public Utilities Commission

On March 18, 2010, PacifiCorp filed an application to the CPUC for a proposed customer rate increase pursuant to the terms of KHSA to institute a surcharge of \$13.76 million on its California customers for removal of the Four Facilities. This surcharge translates to approximately \$1.53 million per year over nine years for a projected total of \$16 million at the end of the nine years and a per residential customer amount of approximately \$1.61 per month. Despite a formal motion to Hold in Abeyance the decision to raise customer rates by the Division of Ratepayer Advocates, in May 2011 the CPUC issued a final order authorizing the

collection of the dam removal surcharge from California customers pursuant to the terms of the KHSA and found that the KHSA "provides the most cost effective method of collecting the funds necessary to resolve conflicts over resources in the Klamath Basin. If the KHSA surcharge is not instituted... ratepayers would be exposed to an uncertain amount of costs in addressing what to do with PacifiCorp's Klamath assets" (CPUC 2011).

The CPUC found that dam removal costs under the KHSA were distributed among a number of parties, while relicensing costs, including compliance with Water Quality certification under Section 401 of the CWA, construction of fish passage facilities, or potentially decommissioning the dams, would most likely be the sole responsibility of PacifiCorp and its customers. The CPUC approved the collection of surcharges that capped customer exposure for dam removal, as defined in the KHSA (CPUC 2011).

PacifiCorp specified that the surcharge amount collected from California customers "may have to be adjusted in the future to reflect variations in load forecasts, but will not exceed 2 percent of the authorized revenue requirements as of January 1, 2010" (CPUC 2011). In their 2011 ruling, the CPUC endorsed the surcharge amount and nine-year timeframe for collection. They also endorsed the 2 percent authorized revenue requirement in order to support the KHSA removal start date, and to accrue sufficient interest to make up the difference between the surcharge collected from customers and the amount identified in the KHSA (CPUC 2011).

Oregon Public Utilities Commission

In 2009 the Oregon Senate passed Senate Bill 76 which directed the OPUC to review the collection of surcharges from PacifiCorp customers for the purpose of establishing a fund for the removal of the Four Facilities in accordance with the KHSA. Before making its decision on rate increases in accordance with Senate Bill 76, the OPUC conducted a hearing pursuant to ORS § 757.210 to determine whether the surcharge to fund dam removal proposed by PacifiCorp, were "fair, just, and reasonable".

In the OPUC's staff testimony before the PUC, staff reported that they believed the costs estimated by PacifiCorp for relicensing the Four Facilities (potentially in excess of \$400 million [2010 dollars] in capital costs over the 40 year license term) were reasonable given the existing uncertainties and quantified risks (Brown 2010). Staff for the OPUC stated there was substantial risk to PacifiCorp and its customers from the denial of CWA 401 Water Quality Certification from the states of California or Oregon for relicensing of the Four Facilities. OPUC staff also indicated there was substantial uncertainty financial risk associated with implementation of fish passage and fish protection measures. PacifiCorp would be financially responsible if initial measures prescribed by the FERC license were unsuccessful. The responsibility for future problems and cost escalations from failed attempts to meet conditions of a new license would be borne solely by PacifiCorp and its customers (Brown 2010).

The OPUC concluded that removal of the Four Facilities, as envisioned under the KHSA, "mitigates the risks associated with decommissioning and removal of the

SECTION 4 • Secretarial Determination Findings of Technical Studies

4.4.4 Previous PacifiCorp Analyses of Relicensing versus Removal of the Four Facilities and Public Utility Commission Rulings

facilities for PacifiCorp, and is therefore the least risky alternative for customers compared to relicensing" (Brown 2010). In Order No. 10-364 (September 16, 2010), the OPUC affirmed customer surcharges required by Senate Bill 76 and adopted a process to annually review and, if necessary, update the approved surcharges associated with removal of the Four Facilities under the KHSA. On May 25, 2011 the OPUC approved Order No. 11-174 affirming the surcharges to establish a fund (\$184 million) for the removal of the Four Facilities (OPUC 2011).

4.4.5 Wild and Scenic River

This section describes the Klamath River's National Wild and Scenic River (WSR) values in the Klamath Basin and potential effects to these values as a result of potential removal of the Four Facilities. The National WSR System was created by Congress through the Wild and Scenic Rivers Act (WSRA) in 1968 (Public Law 90-542; 16 U.S.C. 1271 et seq.) to preserve certain rivers with outstanding natural, cultural, and recreational values in a free-flowing condition for the enjoyment of present and future generations.

Two Klamath River components of the National Wild and Scenic River System would be affected by dam removal. The sections below describe the WSR segments that would be affected; the location of these river segments in the Klamath Basin are shown on Figure 4.4.5-1.

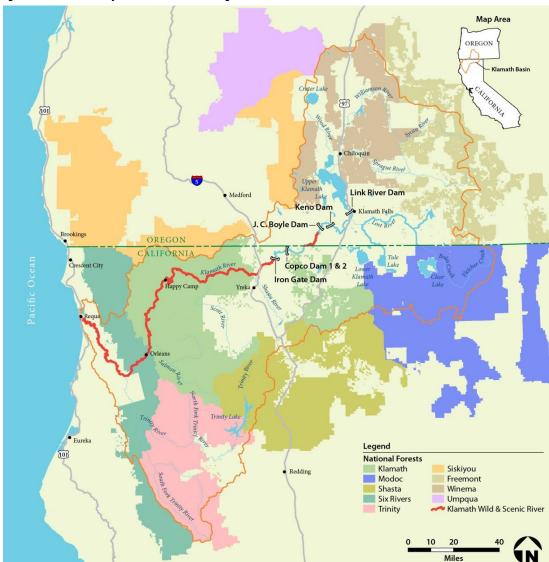


Figure 4.4.5-1: Location of Wild and Scenic River segments in the Klamath Basin

4.4.5.1 Oregon WSR

An 11-mile segment of the Klamath River in Oregon was designated as a component of the National WSR System in September 1994. The designation was made by the Secretary of the Interior, at the request of the Governor of Oregon, under Section 2 (a) (ii) of the WSRA. The 11-mile segment, extending from 0.25 miles below the J.C. Boyle powerhouse to the Oregon-California state line, is classified as scenic. The segment was designated as a WSR to protect and enhance the following outstandingly remarkable values (ORVs): recreation, wildlife, fish, scenic, prehistoric, and traditional use by Indian tribes in the basin. The Oregon WSR is located in the Hydroelectric Reach of the Klamath River between J.C. Boyle Dam and the Oregon-California state line. The State of Oregon and Bureau of Land Management (BLM) share river management responsibilities for the Oregon Klamath WSR.

4.4.5.2 California WSR

A 189-mile segment of the Klamath River in California was designated as a component of the National WSR System in January 1981. The designation was made by the Secretary of the Interior at the request of the Governor of California, also through section 2(a)ii) of the WSRA. Classified as recreational, this California Klamath WSR component begins approximately 0.68 below Iron Gate Dam and ends at its confluence with the Pacific Ocean. It was designated primarily to protect and enhance its outstandingly remarkable anadromous fishery. The California Klamath River WSR includes portions of its three principal tributaries, the Scott and Salmon Rivers and Wooley Creek, for a total of 286 miles. The California Klamath River WSR segment is located downstream of the Four Facilities. The US Forest Service, BLM and National Park Service share river management responsibilities for the California Klamath WSR.

4.4.5.3 Determination of Consistency with WSRA

The federal agencies responsible for Klamath WSR management are required by Section 7(a) of the WSRA to make a determination whether certain projects are consistent with its river-resource protection requirements. A *Preliminary WSRA Section 7(a) Determination* is being developed to address WSRA consistency prior to a Determination by the Secretary on dam removal. The WSRA consistency determination will follow an evaluation of the effects of dam removal on Klamath River WSR values as prescribed by the WSRA. Federal projects such as the proposed removal of the Four Facilities are consistent with the WSRA's Section 7(a) protections when they do not "invade", or intrude within, the WSR boundary, nor "unreasonably diminish" its scenery, recreation, fish and wildlife values as they existed at the date of WSR designation.

4.4.5.4 WSR Effects Criteria and Evaluation

The evaluation criteria for the Preliminary WSRA Section 7(a) Determination include the following:

WSR Scenery Evaluation Criteria

 Water flow character (river flows and accompanying river width, depth and channel inundation or exposure)

- Water appearance (clarity, turbidity, depth of view, color, prominence of algae)
- Fish and wildlife viewing
- Riparian vegetation
- Natural appearing landscape character (the visual effects of facilities and structures as viewed from the designated WSR)

WSR Recreation Evaluation Criteria

- Whitewater boating
- Recreational fishing
- Other recreational activities (water play, swimming, camping)
- Recreational setting (water quality related aesthetic odors, tastes, contacts, and public health and safety aspects)

WSR Fisheries Evaluation Criteria

- Stream flow regime
- Water temperature
- Water quality (physical, biological and chemical)
- Aquatic habitat (geomorphic condition, sediment transport regime and substrate quality)
- Fish species population conditions, specifically:
 - a. Anadromous salmonid fish species
 - b. Resident fish species
 - Species traditionally used and culturally important to Native Americans

Wildlife Value Evaluation Criteria

• Changes in habitat for affected species

4.4.5.5 Summary of Project Effects to WSR River Values

This section presents a summary of the effects of removal of the Four Facilities on scenery, recreation, fish, and wildlife river values of the Oregon and California Klamath WSRs.

Scenery

For both the Oregon and California Klamath WSRs, short-term negative effects are expected due to the increase in suspended sediments which would impair water clarity. In the long-term, removal of the Four Facilities would improve water clarity; result in more frequent fish and riverside wildlife viewing opportunities; and, restore natural river processes that would re-establish natural riverine scenery conditions.

Recreation

For both the Oregon and California Klamath WSRs, short-term negative effects to recreation opportunities are expected during the deconstruction process from increased turbidity and suspended sediment within river recreation settings.

Currently the Oregon Klamath WSR provides a unique recreation opportunity in the region; specifically, high-quality, sustained Class IV whitewater boating (Hell's Corner) throughout the summer and fall months. Following dam removal the seasonal availability of these unique whitewater flows would be reduced, and would be less predictable in the summer-fall period. There would be some continued opportunity for whitewater boating in the range of these unique Class IV flows, primarily earlier in the year and as a function of a more natural hydrograph. Boating and all other recreational opportunities would benefit from improved water quality due, in part, to the elimination of toxic algae produced in the Klamath Hydroelectric Project reservoirs in the summer and fall months and transported downstream. The Oregon Klamath WSR's recreational fishing opportunities would also improve due to increased fish species and abundance, particularly salmon, steelhead, and redband trout.

For the California Klamath WSR, long-term recreational boating opportunities would not be affected. Long term improvements in fish populations and water quality would result in beneficial effects to recreational boating, fishing, waterplay and all other recreation opportunities.

Fish

For both the Oregon and California Klamath WSRs, there would be short-term (<2 years following dam removal) negative water quality effects on fish habitat during dam deconstruction and reservoir drawdown. In the long-term (2-50 years following dam removal) with removal of the Four Facilities and increased fish habitat along with improvements in stream flow, water quality, and other aquatic habitat would contribute to increased fish species diversity and abundance for both WSR segments.

Wildlife

Short-term negative effects to wildlife habitat due to increased sediment and SSCs in the river system during reservoir draw down and dam removal. In the long-term, removal of the Four Facilities would improve riparian habitat and increase forage opportunities for wildlife species that depend on fish.

4.4.5.6 Summary of Effects

Table 4.4.5-1 summarizes the changes expected to WSR resources as a result of dam removal.

Table 4.4.5-1: Changes Expected to WSR Resources as a Result of Dam Removal

	Scenery Value	Recreation Value	Fish Value	Wildlife Value
Oregon Klamath WSR	Improved	Whitewater boating opportunities would be reduced, fishing and other recreational opportunities would be improved	Improved	Improved
California Klamath WSR	Improved	Improved	Improved	Improved

4.4.6 Recreation

This section discusses the effects to recreation from removal of the Four Facilities. Dam removal would result in the loss of the four Klamath Hydroelectric Project reservoirs as well as changes to river flows and water quality conditions. Correspondingly, these changes would result in reduction or loss of some recreation opportunities while also leading to the improvement or addition of other recreation opportunities along the Klamath River and in the Klamath Basin.

4.4.6.1 Reservoir Recreation

Existing popular reservoir recreation activities include power boating, waterskiing, lake swimming, and flat-water boat angling at J.C. Boyle, Copco 1, and Iron Gate reservoirs. These reservoirs are also popular areas for sightseeing, camping, and wildlife viewing; attracting visitors primarily from the surrounding communities in Klamath and Jackson counties in Oregon and in Siskiyou County, California. Figure 4.4.6-1 and Table 4.4.6-1 provide an overview of the reservoirs and lakes in the Klamath Basin and the surrounding region that provide flat water recreational opportunities.

Removal of the Four Facilities and loss of the Klamath Hydroelectric Project reservoirs would result in loss of these recreation activities.

In addition to the loss of open water and flat-water recreation at the reservoirs, some campgrounds, day-use areas, and boat launches that would no longer have immediate access to water would be permanently removed as part of dam removal. Table 4.4.6-2 summarizes the recreation facilities that would be removed.

Figure 4.4.6-1: An overview of recreational activities at regional reservoirs and lake.

Table 4.4.6-1: Comparison of Klamath Hydroelectric Project Reservoirs and Regional Low and Moderate Visitor Use In Reservoirs and Lakes Providing Comparable Recreational Opportunities

Lake or Reservoir	Distance from Nearest Subject Reservoir (miles)	Surface Water (acres)	Number of Developed Campsites	Number of Developed/ Improved Boat Launches	Number of Developed Picnic Areas	Generalized Use Levels
		Subje	ect Reservoirs	•		•
J.C. Boyle	N/A	420	16	2	4	Low
Copco 1	N/A	1,000	0	2	2	Low
Copco 2	N/A	40	0	0	0	Low
Iron Gate	N/A	944	37	3	6	Moderate
	Oth	er Lakes and	Reservoirs in th	ne Region		
Fourmile Lake	26	740	25	1	0	Low
Agency Lake	28	5,500	43	3	0	Low
Applegate Reservoir	36	988	66	3	1	Low
Medicine Lake	46	408	72	1	1	Low
Hyatt Reservoir	15	1,250	172	2	1	Moderate
Emigrant Lake	16	806	110	2	2	Moderate
Howard Prairie Reservoir	17	2,000	303	4	1	Moderate
Upper Klamath Lake	20	85,120	269	6	1	Moderate
Gerber Reservoir	62	3,830	50	2	1	Moderate
Trinity Lake Unit	73	16,535	500	7	2	Moderate
Whiskeytown Lake	87	3,200	139	3	1	Moderate

Source: PacifiCorp 2004; Jackson County Parks 2010; VisitUSA.com 2010

Table 4.4.6-2: Recreation Facilities Removed as Part of Dam Removal

Site Name	Existing Facilities	Facilities Following Dam Removal		
Sites at J.C. Boyle Reservoir (Oregon)				
Pioneer Park	Two day-use areas with picnic tables, fire rings, and portable toilets	All facilities would be removed		
Sites at Copco 1 Reser	voir (California)			
Mallard Cove	Day-use picnic area and boat launch	All facilities would be removed. Parking area would be regraded, seeded, and planted.		
Copco Cove	Picnic area and boat launch	All facilities would be removed. Parking area would be regraded, seeded, and planted.		
Sites at Iron Gate Rese	ervoir (California)			
Wanaka Springs	Day-use area, campground, boat launch	All facilities would be removed. Parking area would be regraded, seeded, and planted		
Camp Creek	Day-use area, campground, boat launch	All facilities would be removed. Parking area would be regraded, seeded, and planted		
Juniper Point	Primitive campground and boat dock	All facilities would be removed. Parking area would be regraded, seeded, and planted		
Mirror Cove	Campground and boat launch	All facilities would be removed. Parking area would be regraded, seeded, and planted		
Overlook Point	Day-use area	All facilities would be removed. Parking area would be regraded, seeded, and planted		
Long Gulch	Picnic area and boat launch	All facilities would be removed. Parking area would be regraded, seeded, and planted		
Dutch Creek	Day-use area	All facilities would be removed. Parking area would be regraded, seeded, and planted		

Source: Reclamation 2011l

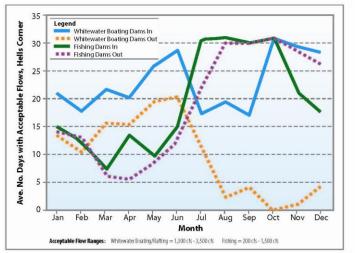
Following removal of the Four Facilities, the reservoirs and the recreational benefits they currently produce throughout the region, including regional economic benefits related to tourism (addressed in Section 4.4.1, *Economics*), would not be possible along the free-flowing river and would be permanently lost.

As indicated in Table 4.4.6-1, there are at least 11 comparable lakes and reservoirs in the region that have similarly low to moderate visitor use levels compared to the Klamath Hydroelectric Project reservoirs and provide equivalent open water and flat-water recreation opportunities as well as developed campsites and boat launches. These regional resources could compensate, in part, for the loss of the Klamath Hydroelectric Project reservoirs and recreational facilities; however, it is unknown to what degree other regional lakes and reservoirs would be used by recreationalists who currently favor the Klamath Hydroelectric Project reservoirs.

4.4.6.2 Changes to Whitewater Boating Resources

In addition to the loss of the Klamath Hydroelectric Project reservoirs, removal of the Four Facilities would eliminate the daily peaking flows from J.C. Boyle Dam and would return the river to a more natural flow regime. Currently, the daily hydropower peaking flows provide for an extended and predictable whitewater boating season at the popular Hell's Corner Reach. Dam removal would reduce the whitewater boating season somewhat in the Hell's Corner Reach. Downstream of Iron Gate Dam to the estuary there would be little change to the number of whitewater boating days. Following removal of the reservoirs and restoration of the formerly inundated river channel, it is expected there would be additional whitewater boating opportunities on those reaches. Water quality improvements, as well as changes in flows subsequent to dam removal, will likely enhance whitewater boating in some reaches.

Existing Whitewater Boating


Whitewater boating along the Klamath River currently takes place at the J.C. Boyle Bypass Reach, Hell's Corner Reach, Copco 2 Bypass Reach, and downstream of Iron Gate Dam.

The Hell's Corner Reach currently provides Class III to V rapids during daily peaking flows from the PacifiCorp hydropower operations (typically between 10 a.m. and 2 p.m.). Acceptable whitewater boating flows range from 1,300 cubic feet per second (cfs) to 3,000 cfs (PacifiCorp 2004). Outside the daily peaking flows from hydropower operations, flow rates within this reach typically do not meet the acceptable range to create or enhance whitewater boating opportunities. From 1994 to 2009, there was an average of 4,414 recreation days per year, peaking in the mid-1990s at around 6,000 recreation days per year. Whitewater boating use typically occurs from April through October, with about 80 percent of the commercial rafting use occurring from July through September. Commercial boating use accounted for about 93 percent of the whitewater boating use on this reach (DOI 2011d).

Whitewater Boating Following Dam Removal

The DOI modeled the average number of days with acceptable river flows in specific reaches each month for specific recreational activities, both with and without dam removal (DOI 2011d). Table 4.4.6-3 lists the percent change in the

Figure 4.4.6-2: Comparison of Average Number of Days per Year with Acceptable Flows for Whitewater Boating and Fishing in the Hell's Corner Reach – Damslin Compared to Dams Out.

estimated annual average number of days meeting the range of acceptable flows for whitewater boating and fishing activities on the Klamath River. The most marked changes would occur in the J.C. Boyle and Copco 2 bypass reaches, where additional flows would increase recreational opportunities, and in the existing Hell's Corner Reach where the loss of peaking flows would decrease whitewater boating opportunities.

The Hell's Corner Reach is unique within the region in that it provides Class IV-V rapids during the late summer months (August and September). Reductions in acceptable whitewater flows at Hell's Corner Reach would occur throughout the year (see Figure 4.4.6-2); however, August and September would have larger flow reductions, of 88 percent and 76 percent, respectively (DOI 2011d).

For the Keno Reach and the reaches downstream of Iron Gate Dam, the availability of flows within the acceptable flow ranges for whitewater boating opportunities would essentially remain the same if dams are removed.

Table 4.4.6-3: Estimated Change in Number of Days Meeting the Range of Acceptable Flows for Recreational Activities on Klamath River Reaches

River Reach	Activity	Total Avg. No. of Days Annually (Dams Remain)	Total Avg. No. of Days Annually (Dam Removal)	Percent Change
Keno Reach	Whitewater Boating	151	139	-7.9%
	Fishing	246	238	-3.5%
J.C. Boyle Bypass Reach	Whitewater Boating	5	41	794%
	Fishing	107	142	33%
Hell's Corner Reach	Whitewater Boating/Rafting	278	119	-57%
	Fishing	234	228	-2.7%
Copco 2 Bypass Reach	Whitewater Boating	10	223	2,080%
	Fishing	14	3	-79%
Iron Gate to Scott River	Whitewater Boating/Fishing	278	281	1.0%
Scott River to Salmon River	Boating	243	246	1.4%
	Fishing	175	182	4.2%
Salmon River to Trinity River	Whitewater Boating/Fishing	207	211	1.8%
Trinity River to Ocean	Whitewater Boating/Fishing	239	238	-0.2%

Source: DOI 2011d

If dams were removed, the changes in flows in Hell's Corner Reach would result in a loss of visitors travelling to the area for whitewater boating on the upper Klamath River. Figure 4.4.6-3 shows regional rivers with whitewater boating opportunities. However, while these regional whitewater boating locations (see Table 4.4.6-4 and Figure 4.4.6-3) could substitute for the loss of flows at Hell's Corner, visitors specifically seeking Class IV-V rapids during the late summer might choose not to visit the Klamath Basin. In addition, there would no longer be predictable flows in terms of known timing for flow releases, as under existing conditions. The known timing of the releases allows the commercial outfitters to provide whitewater boating opportunities on a regularly scheduled basis. Figure 4.4.6-3 illustrates the location and generalized use levels of rivers in the Klamath Basin and the surrounding region that provide whitewater boating opportunities.

Map Area OREGON OREGON CALIFORNIA Generalized Use Levels: Low Moderate High Sources for the recreation information: PacifiCorp 2004; Jackson County Parks 2010; VisitUsa.com 2010; FERC 2007.

Figure 4.4.6-3: Whitewater boating opportunities in the Klamath Basin and in the region

Table 4.4.6-4: Regional Rivers with Whitewater Boating Opportunities

River	Generalized Use Levels	Boating Class Type ¹	Miles of Boatable Whitewater	Factors Affecting Use Levels
Clear Creek	Low	III-V	7	Difficult access
North Umpqua River	Moderate	II-IV	32	Easy access, most skill levels, scenery, boatable year round, shoreline suitable for camping
McCloud River	Moderate	II-IV	35	Proximity to I-5, most skill levels, low flows in summer
Pit River	Low	IV-V	34	Fragmented/short runs with long stretches of flatwater between, remote location
Rogue River	High	II-V	100+	Easy access, most skill levels, scenery, boatable year round, shoreline suitable for camping, many commercial outfitters
Salmon River	Moderate	II-V	44	Requires advanced/expert boating skills, commercial use
Scott River	Low	III-V	20	Recommended for expert boaters only
Smith River	Low	II-V	100+	Requires advanced/expert boating skills, low summer flows
Upper Sacramento River	Low	III-V	36	Proximity to I-5, average solitude
Trinity River	Moderate	II-V	100+	Most skill levels, easy access, commercial use

Source: FERC 2007

Whitewater Boating Summary

Dam removal would decrease whitewater boating in the Hell's Corner Reach by about 57 percent. However, changes in the location and amount of acceptable whitewater boating flows, combined with other regional whitewater opportunities (see Table 4.4.6-4), could be expected to reduce the effects of the loss of current whitewater flows created by hydropower peaking operations.

Dam removal would likely result in increases in the availability of whitewater boating flows within the acceptable flow range in both the J.C. Boyle Bypass and Copco 2 Bypass Reaches. Based on DOI modeling, there would be a substantial increase in whitewater boating flows within the acceptable flow range for both of these bypass reaches. It is also likely that additional opportunities would present themselves in those reaches of the river presently inundated by the reservoirs, although those specific opportunities remain uncertain.

Flows for whitewater boating would remain essentially unchanged below Iron Gate Dam. It is anticipated that improvements in water quality if dams were removed would improve the whitewater boating experience below Iron Gate and could increase the numbers of visitors, particularly in late summer.

¹ As rated by the American Whitewater International Scale of Difficulty (American Whitewater 1998).

4.4.6.3 Changes to Recreational Fishing Resources

In addition to effects on whitewater boating opportunities, removal of the Four Facilities and corresponding changes in Klamath River would change recreational fishing resources and opportunities, including the loss of flatwater fishing on three reservoirs and the increase in river-based fishing.

Reservoir Based Recreational Fishina

Removal of J.C. Boyle, Copco 1, and Iron Gate reservoirs would result in the complete loss of habitat for introduced, non-native, warm water fish species, which are considered an important recreational fishing resource in the region. This loss would be permanent and would represent a considerable effect to anglers who value this fishery. In addition to the direct effects on individual anglers, the disappearance of recreational fisheries as well as the loss of other recreational opportunities at these reservoirs would result in a decline in the number of visitors to the reservoirs as well corresponding losses to the regional economy.

As described in Section 4.4.1.3, *Regional Economic Development (Reservoir Recreation)*, the recreation survey completed by PacifiCorp in 2002 found total visitation at J.C. Boyle, Copco 1, and Iron Gate Reservoirs to be 95,470 recreation days. Using PacifiCorp's annual activity-specific growth rates (see Section 4.4.1.3) also describes the projected visitation and corresponding reservoir recreation economic value across all three reservoirs for 2020-2061 under both a dam removal and a dams remain with KBRA implementation scenario.

As a result of dam removal and the loss of reservoir recreation, including perch and bass fishing, there would be an annual decline of visitor days at the reservoirs. The economic analysis assumes an average annual reduction of 40,901 recreation visits.

River Based Recreational Fishing

Removal of the Four Facilities and corresponding changes including long-term improvements in water quality, changes in river flows to a more natural regime, and access to habitat above the dams would improve habitat conditions and increase the area available for native fish populations. These changes are anticipated to increase the abundance and extent of native fish fisheries, such as salmon, steelhead, and redband trout, and related in-river recreational fishing opportunities.

Dam removal would increase free-flowing redband/rainbow trout habitat approximately 43 miles downstream of Keno Dam by restoring river channel habitat inundated by reservoirs, eliminating extreme daily flow fluctuations in the J.C. Boyle Peaking Reach, and increasing flows in the J.C. Boyle Bypass Reach. This could expand the current distribution of the existing trophy redband trout fishery seven-fold (Buchanan et. al. 2011) from downstream of Keno Dam to the Iron Gate Dam site (see Section 4.1). Dam removal would also benefit Chinook salmon and steelhead by restoring river channel habitat inundated by reservoirs, improving water quality, modifying flows, reducing disease (primarily

for salmon), and reestablishing access to more than 420 miles of historical habitat (see Section 4.1).

While there would be a complete loss of the warm water non-native fishery in the reservoirs upon dam removal, increases in recreational fishing for salmon, steelhead, and redband trout could offset some or all of those losses.

Summary of Effects

Table 4.4.6-5 summarizes the expected changes to recreational resources as a result of dam removal. As shown in Table 4.4.6-5, the major recreational resources analyzed in this section were open water recreation; camping and day-use recreation; whitewater boating; flat-water fishing; and, in-river fishing. Open water recreation currently enjoyed at the Klamath Hydroelectric Project reservoirs would be permanently lost following dam removal; however, there is potential for regional lakes and reservoirs to compensate for this loss. Similarly, camping and day-use opportunities, while eliminated at the Klamath Hydroelectric Project reservoirs, could be partially replaced by regional recreation resources. Whitewater boating would be reduced in the Hell's Corner Reach; however, removal of the Four Facilities would result in changes in flows in the Copco 2 and J.C. Boyle Bypass Reaches. Finally, flat-water fishing opportunities would be lost at the reservoirs, while habitat improvements for salmonid and other anadromous fish species would likely increase in-river fishing opportunities.

Table 4.4.6-5: Expected Changes to Recreational Resources as a Result of Dam Removal

Resource	Effect of Dam Removal
Open water recreation	Permanently lost at Klamath Hydroelectric Project reservoirs; potential for replacement recreational opportunities at lakes and reservoirs in the region.
Camping and Day-Use	Many opportunities lost at Klamath Hydroelectric Project reservoirs; potential for replacement recreational opportunities at other sites in the region and recreation sites to be constructed along the newly exposed river reaches.
Whitewater Boating	A considerable loss in the Hell's Corner Reach. Considerable increases in the Copco 2 and J.C. Boyle Bypass Reaches.
Flat-water Fishing	Permanently lost at Klamath Hydroelectric Project reservoirs.
In-River Fishing	Modeled increases in salmonid and other anadromous fish species and associated in-river recreational fishing opportunities.

4.4.7 Real Estate

Three main categories of lands are involved in the potential removal of the Four Facilities. These include: 1) lands inundated by the reservoirs and other properties owned by PacifiCorp (Parcel A and B lands); 2) lands required temporarily or permanently for dam and facility removal; and 3) privately owned lands (other than PacifiCorp) adjacent to or influenced by the reservoirs and the Klamath River (see sidebar).

4.4.7.1 PacifiCorp Owned Property at the Reservoirs

According to the KHSA (Section 7.6.4), Parcel B lands (see sidebar) would be transferred to the respective state (Oregon or California) or a designated third party before facilities removal. The lands would then be managed for public interest purposes such as fish and wildlife habitat restoration and enhancement, public education, and public recreational access.

The states have no detailed plans at present, but indicate that the Parcel B lands would be managed consistent with public interest purposes such as fish and wildlife habitat restoration and enhancement, public education, and public recreational access in the Klamath River system. These Parcel B lands include the approximately 2,000 acres of inundated lands which will be restored per the Reservoir Area Management Plan (Reclamation 2011k), There are also several houses owned by PacifiCorp on the Parcel B lands near Iron Gate and Copco 1 facilities that will transfer to the State of California. The State of California has not made any decision regarding their future disposition. PacifiCorp owns electric transmission and distribution facilities, which will remain under its ownership (KHSA Section 7.6.1).

The Keno Facility title would be transferred from PacifiCorp to the Federal government to be managed by DOI based on terms agreed to by both parties (KHSA Section 7.5). For purposes of this analysis, the Keno transfer agreement is assumed to be complete by March 31, 2012, which is the target date for reaching an agreement on the KHSA (KHSA Section 7.5.2).

In addition to the above categories of lands, the KHSA identifies three PacifiCorp owned tax lots in the vicinity of the East Side/West Side generating facilities lands near Klamath Falls, Oregon that may be transferred to DOI, upon dam decommissioning (KHSA Section 6.4.1.C).

4.4.7.2 Private Property at Copco 1 and Iron Gate Reservoirs

Recreational uses on and around the reservoirs including power boating, waterskiing, lake swimming, and flat water boat angling (described in Section 4.4.6, *Recreation*) have led to private residential development along the shores and in the vicinity of the reservoirs. The *Dam Removal Real Estate Evaluation Report* (DOI 2011c) investigated the impact of the proposed removal of the Four Facilities on the market value of private parcels located adjacent to or in the vicinity of the reservoirs. Rather than analyzing the impact on the value of specific parcels or properties, the report examined the potential impacts on land values around the reservoirs in the aggregate (DOI 2011c).

Land Categories

PacifiCorp owns approximately 11,000 acres in Klamath County, Oregon and Siskiyou County, California that are not directly associated with its Klamath hydroelectric facilities, and that are generally not included within the existing FERC project boundary. The KHSA describes this property as Parcel A. Implementation of the KHSA would have no effect on disposition of Parcel A lands, which would be disposed of by PacifiCorp subject to applicable Public Utility Commission approval requirements (KHSA Section 7.6).

PacifiCorp also owns approximately 8,000 acres in Klamath County, Oregon and Siskiyou County, California that are associated with the Klamath Hydroelectric Project and/or included within the FERC project boundary. The KHSA describes this property as Parcel B lands. Of these lands, approximately 2,000 acres are currently inundated by reservoirs.

Dam removal would require the temporary use of public roads, PacifiCorp lands, and Federal lands for construction-related activities and the storage of construction materials. New roads would need to be created to provide access to the Klamath Hydroelectric Project facilities during dam decommissioning and removal. New temporary and permanent roads would be constructed on formerly inundated lands.

Affected Parcels

The *Dam Removal Real Estate Evaluation Report* identified a total of 1,467 privately-owned parcels around Iron Gate and Copco 1 reservoirs. Of these, 12 percent were determined to be improved and 88 percent were determined to be vacant based on the Siskiyou County Land Use Code. The TMT's real estate appraiser then identified a subset of 668 privately-owned parcels to which it determined there could be an effect on land values as a result of dam removal. Potential effects from dam removal were measured by either a loss of scenic view of the reservoir or a loss of reservoir frontage on the parcel. The Appraiser determined that parcels would not be affected by dam removal if they were larger than 50 acres, located east of Copco Bridge (shown on Figure 4.4.7-1), designated unbuildable by the county Health Department, or had no view of the reservoirs prior to dam removal (DOI 2011c).

Of this smaller group of 668 impacted parcels, 19 percent were determined to be improved (with some type of development on them) and 81 percent were determined to be vacant. Many of the unimproved parcels in the vicinity of Copco Reservoir are not suitable for building due to topography and limited access to utilities, but are used by their owners for camping and fishing access.

Table 4.4.7-1 summarizes the county land use designations for all of the privately-owned parcels as well as the parcels determined to be affected by dam removal. Data from 2010 show the full-time resident population around Copco 1 and Iron Gate reservoirs to be 72 people and 36 households (DOI 2011c).

Table 4.4.7-1: Land Use Designations of Privately Owned Parcels around Copco 1 and Iron Gate Reservoirs

Land Use	Total Parcels	Affected Parcels
Timber	1	0
Rural Single-Family Residential	3	0
Vacant Commercial	4	2
Commercial	5	5
Rural (Minimum of 20 acres)	5	3
Agricultural	7	0
Vacant Rural Land (Minimum of 20 acres)	33	13
Single Family Residence	167	127
Vacant Residential Land	1,246	518
Total	1,467	668

Source: DOI 2011c

Figure 4.4.7-1 depicts the privately owned parcels and improved lots around Copco 1 Reservoir, with an emphasis on the cluster of private homes in the southeastern corner of the reservoir. There are no privately owned parcels immediately fronting Iron Gate Reservoir; the majority of this land is owned by PacifiCorp and some is under public ownership.

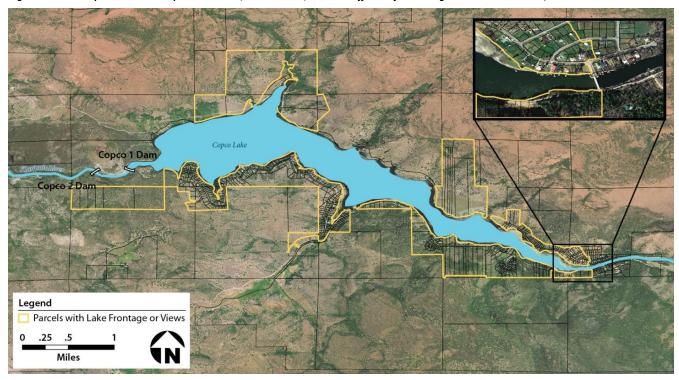


Figure 4.4.7-1: The parcels around Copco 1 Reservoir, shown below, would be affected from changes to water access and/or views.

As described above, private development in close proximity to the reservoirs occurred largely as a result of the recreational opportunities in the Klamath River Basin and the region. A strong public connection to these reservoirs exists due to the recreation they provide. Many of the existing recreational opportunities would change following dam removal; however, with the removal of the Four Facilities, public access to the newly created river channel would remain, and recreational opportunities would be available on and along the river.

The loss of scenic value and recreational opportunities associated with removing the reservoirs would decrease the value of properties with frontage on, or views of, Copco 1 and Iron Gate reservoirs (see affected parcels in Table 4.4.7-1). However, TMT's contract appraiser responsible for the Dam Removal Real Estate Evaluation Report (DOI 2011c, March 22, 2011), was unable to find a sufficient number of sales to provide a statistically valid quantification of the impact of removal of the Copco 1 and Iron Gate reservoirs on property values for 2008 and the corresponding change to the Siskiyou County tax role. Rather, they used accepted appraisal methodologies to make the estimates. A supplement is currently being prepared to the real estate evaluation report to provide additional information and insight on the potential effect of reservoir removal on property values around these reservoirs. The supplement will include evaluations with a date of value of 2004 and 2006.

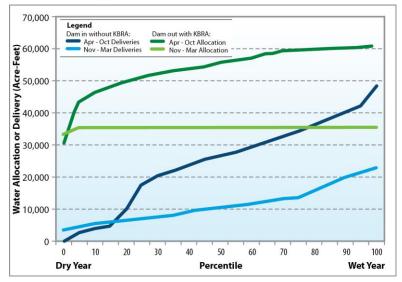
Although not described in any report, removal of the Four Facilities and restoration of the Klamath River has the potential to change the value of properties on or near the Klamath River downstream of Iron Gate Dam. In the

4.4.7 Real Estate

long term, improved water quality, the elimination of toxic algae in the Klamath River, and the return of more robust salmon and steelhead runs could increase the value of these parcels. However, it is too speculative to estimate the timing and magnitude of possible changes in downstream property values if dams were removed and KBRA was implemented.

4.4.8 Refuges

The KBRA would provide for modification of the authorized purpose of Reclamation's Klamath Project, to add fish and wildlife uses, assuring that the refuge water allocation would be equal in priority to the irrigators' allocation. The KBRA allows refuge managers to call for water when it is needed, which gives them the flexibility to create optimum habitat conditions.


The refuge managers will gain the ability to order water delivery through Reclamation's Klamath Project facilities. Management of refuge lease lands would remain subject to the National Wildlife Refuge System Improvement Act of 1997 (P.L. 105-57), the Kuchel Act (P.L. 88-567), and all other applicable laws, regulations and policies. The parties would pursue collaborative conservation measures on the lease lands, including walking wetlands (as described below), and other practices beneficial to wildlife. The USFWS would maintain the ultimate administrative control over the lease lands. As described in Appendix A of the KBRA, the Kuchel Act provides that the refuges would receive 20 percent of net lease revenues for implementation of conservation practices on the refuges. In 2009, the refuges share would have been approximately \$343,000.

With dam removal and implementation of the KBRA, the Lower Klamath National Wildlife Refuge (NWR) would, for the first time in more than 100 years, have a high certainty of a water delivery in the critical April through October time period, even in most dry years. The April through October allocation would equal or exceed 48,000 acre feet in 88 percent of the years, an allocation that meets the needs of the refuge. This allocation increases incrementally up to a maximum of 60,000 acre-feet (April – October) in wet years (see Figure 4.4.8-1).

Historically, the April through October allocation of water met the needs of the refuge in less than 10 percent of the years, with deliveries less than 20,000 acre-feet in most years. With dam removal and implementation of KBRA, the November through March delivery of water to this refuge is much higher, averaging about 20,000 acre-feet and nearly 30,000 acre-feet in the driest years (see Figure 4.4.8-1).

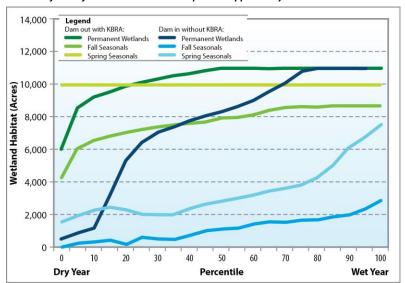

The Drought Plan developed under the KBRA would address occasions when water is in extremely short supply and would state how shortages would be shared among agricultural and refuge uses. The NWRs would receive sufficient water for wildlife purposes in nine of ten years, according to modeling (Mauser and Mayer 2011). If the KBRA had been in effect in 2009, the summer water delivery to Lower Klamath NWR would have been 48,000 acre-feet—about twice as much water as the refuge actually received in 2009.

Figure 4.4.8-1: The Lower Klamath NWR would receive more water (measured in acre-feet) through the Refuge Allocation under KBRA than under dams remaining without the KBRA in both summer and winter seasons. Water deliveries with the KBRA would also vary less between wet and dry years than under existing conditions.

The "Walking Wetlands" program that would benefit from the Refuge Allocation under the KBRA is a program that creates wetlands by flooding of land to various degrees and rotates these wetlands into commercial crop rotation cycles. Lands in the program benefit from increased yields and reduced needs for fertilizers

Figure 4.4.8-2: With implementation of the KBRA, the Lower Klamath NWR would be able to provide more acres of permanent wetland habitat during dry years and the same number of acres during the wettest years as under existing conditions. With the KBRA, the number of acres of fall and spring seasonal wetlands would be greater than without the KBRA in both wet and dry years. More acres of wetland habitat would result in larger numbers of waterfowl and other wetland species supported by the NWR.

and soil fumigation following a wetland cycle. Waterfowl benefit from increased wetland acreage. Because not all lands in the program would be in a wetland cycle during the same year, the program results in wetlands that "walk" from place to place. Walking wetlands would receive water from both the Lower Klamath allocation (1 acre-foot/acre) and the irrigator's available supply (2 to 2.5 acre-feet/acre). Through this program, the refuge would gain additional wetland habitat (see Figure 4.4.8-2) for a relatively minor cost in terms of water allocation, and Reclamation's Klamath Project irrigators would not be penalized for using additional water to provide wetlands on private lands. This provision would apply to "walking wetlands" on both private lands and lease lands on Tule Lake NWR. Use of the Lower Klamath NWR allocation for walking wetlands must be approved by the Refuge Manager.

The Lower Klamath National Wildlife Refuge is listed in the National Register of Historic Places as both a National Historic Landmark and a National Natural Landmark. Implementation of the KBRA will help preserve the functionality of

the site for the purposes for which it was listed. Implementation of the KBRA is expected to result in increases in migratory waterfowl, non-game water birds, wintering bald eagles and other sensitive species.

4.4.8.1 Waterfowl

The Klamath Basin forms a natural funnel for the Pacific Flyway waterfowl migration corridor, as migratory waterfowl transition from northern breeding areas to major wintering sites in the Central Valley of California and Mexico. Tule Lake and Lower Klamath NWRs are considered some of the most important waterfowl refuges in the United States and are major fall and spring staging areas within the Pacific Flyway. In the fall, when wetland acres available at the refuges are reduced due to a lack of water, these waterfowl continue south. As large numbers of waterfowl head into the Central Valley of California, they may come into conflict with agricultural operations, and overcrowding early in the fall may reduce their ability to survive the winter.

To estimate the ability of the Lower Klamath NWR to support migratory waterfowl, the USFWS used a model based on food resources provided in

wetlands and refuge agricultural fields. Under an average water year with implementation of the KBRA, additional water deliveries to Lower Klamath NWR

would result in food resources sufficient to support more than 336,000 fall migrating ducks, compared to 189,000 fall migrating ducks under existing conditions. The difference in waterfowl carrying capacity is even more pronounced in drier years (see Figure 4.4.8-3). Water allocations under the KBRA will allow Lower Klamath NWR to better serve as a major waterfowl migration area in the Pacific Flyway. Without the KBRA, the decline in wetland habitats will significantly reduce the carrying capacity of the refuge and Pacific Flyway for waterfowl.

4.4.8.2 Nongame Waterbirds

Nongame waterbirds include shorebirds, gulls, terns, cranes, rails, herons, grebes, egrets, and ibis. Loss of historic wetland and unregulated market hunting at the historic Tule and Lower Klamath Lakes early in the 20th Century resulted in major declines in waterbird abundance in the Klamath Basin, particularly of colonial nesting species. Lower Klamath NWR, in particular, was established largely to protect nesting colonies from unregulated hunting. Intensive wetland habitat management on Lower Klamath NWR provides habitat for remaining populations, and it is considered the most significant waterbird nesting site in California.

Water supplies under KBRA in an average water year will result in significantly more wetland habitats, which are estimated to provide habitat for more than 8,000 additional nongame waterbirds compared to existing conditions. The increase in non-game waterbird numbers is even greater in drier years (see Figure 4.4.8-4), often exceeding 20,000 compared to existing conditions.

4.4.8.3 Bald Eagles

The mild winters and abundant wintering waterfowl which serve as food sources in the upper Klamath Basin attract the largest wintering population of bald eagles in the United States outside of Alaska. Eagles from as far away as Northeastern Alaska, Northwest Canada, and the Pacific Northwest, as well as from further south in California and Arizona, have been documented to use the Klamath NWRs. Areas that support large wintering concentrations of eagles are relatively uncommon.

Figure 4.4.8-3: On the Lower Klamath NWR, the fall carrying capacity for dabbling and diving ducks (migratory waterfowl) would be greater with dam removal and implementation of the KBRA in both wet and dry years although the difference is more pronounced in dry years.

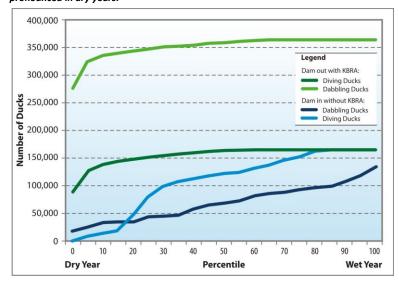
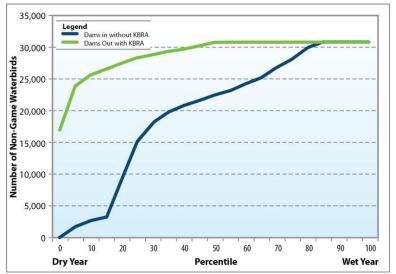



Figure 4.4.8-4: Late summer (August) carrying capacity for nongame waterbirds on the Lower Klamath NWR would be greater with implementation of the KBRA during dry and average years. The carrying capacity would be about the same as currently exists during wet years.

The refuge water allocation under the KBRA would provide additional water and wetland habitats that would result in larger populations of waterfowl on the refuges. This will provide a larger and more reliable food resource base for wintering bald eagles and enhance the value of the refuges as an overwintering location. With implementation of the KBRA, there would be an increase in the number of wintering bald eagles, particularly in dry years.

4.4.8.4 Other Birds and Wildlife Species

Lower Klamath, Tule Lake, and Upper Klamath NWRs support a number of species that are considered threatened or endangered by the federal and/or state governments (Oregon and California). In addition, the refuges also support around 84 focal or priority species identified by federal or state governments, as well as several conservation organizations (Mauser and Mayer 2011). These focal or priority species, while not listed as endangered or threatened, are generally facing one or more threats to their populations or habitats. They include a diversity of birds, mammals, fish, and reptiles. The additional water provided under the KBRA, especially to the Lower Klamath NWR, would result in sufficient water such that the refuges could provide enhanced habitats for these species.

4.4.8.5 Refuge Affects Summary

In summary, dam removal and KBRA implementation would allow the refuges within Reclamation's Klamath Project to have greater certainty about water allocations and flexibility in water deliveries. Full refuge needs would likely be met in 88 percent of years, and changes to the authorized purpose of Reclamation's Klamath Project would give the refuges more equal standing with agricultural uses during drought years. Dam removal and KBRA implementation would also define and maintain the habitat benefits of walking wetlands and provide the refuges revenues from lease lands. The additional water deliveries—and the increased predictability of those deliveries—would mean that greater numbers of migratory waterfowl, non-game water birds, wintering bald eagles, and other sensitive species would be supported by the refuges.

4.4.9 Chemicals in Reservoir Sediments

The sediments trapped behind the Four Facilities have been screened to identify the potential for adverse ecological or human health effects from the presence of chemicals. Reservoirs can trap sediments, which can be contaminated before they enter the reservoir or become contaminated once trapped. If the dams are removed, portions of the trapped sediments would be flushed downstream.

This section summarizes the results of a screening-level evaluation that was performed to identify potential adverse effects from exposures to sediments if: (1) dams are removed and sediments flush downstream; and (2) the reservoirs remain in place along with their associated sediments. This study was designed to inform the larger decision about dam removal under the Secretarial Determination, and determine whether sediments trapped in the reservoirs contain chemicals at concentrations that would preclude their release downstream under an Affirmative Determination. This study does not constitute a formal ecological or human health risk assessment. In the future, if there is an Affirmative Determination, a final plan for dam removal and the associated permitting processes would proceed. The following is a summary of the report entitled *Screening-Level Evaluation of Contaminants in Sediments from Three Reservoirs and the Estuary of the Klamath River, 2009–2011* (CDM 2011e).

4.4.9.1 Exposure Pathways Evaluated

If the facilities are removed, one to two thirds of the trapped sediments, depending on hydrology, are expected to erode from the reservoirs and be transported through the Klamath River and estuary, and into the Pacific Ocean (Reclamation 2011e). A large proportion of the sediments are a small size fraction, consequently, much of the sediment would likely remain in suspension during transport to the ocean, where it would be further dispersed by currents (Reclamation 2011e, Stillwater 2008). With water level decreases in the reservoirs following dam removal, some of the remaining trapped sediments would be exposed to air, becoming reservoir terraces (dry land), and other sediments would be exposed and eroded as the Klamath River cuts a new channel through the reservoir bed. Although a majority of the sediments would be expected to remain in suspension on their way to the ocean, eroded reservoir sediments could form small or temporary deposits along the river bed or bank, in the estuary, or in the near shore area of the Pacific Ocean. These potential depositional areas could provide opportunities for long-term exposure to chemicals in those sediments. Movement of reservoir sediments is most likely to occur within the first two years following dam removal and is not considered likely to continue over the subsequent decades. Potential exposure pathways to sediments related to these changes are shown schematically in Figure 4.4.9-1. The following five pathways were selected to represent the potential exposures to reservoir sediments for biota and humans.

Definitions of Sediment Chemistry Terms

Concentration: The amount of solute per unit volume, or mass of solvent or of solution.

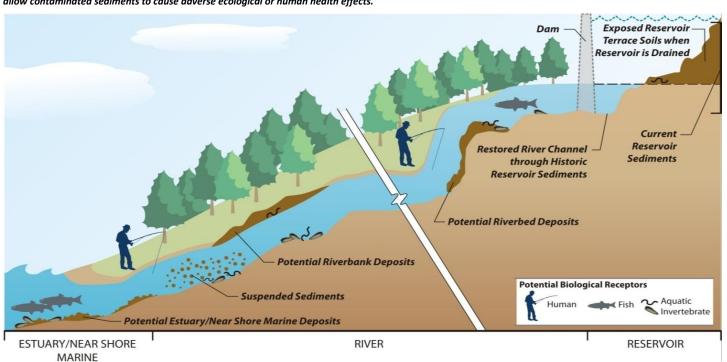
Bioassay: Experiments that use living organisms to test the toxicity of chemicals.

Elutriate: The collected reservoir sediments representing the reservoir sediments mobilized and transported downstream to the Lower Klamath River, the Klamath Estuary, and the Pacific Ocean under a dam removal scenario.

Biota: The combined flora and fauna of a region.

Bioaccumulation: The accumulation of a substance (such as a pesticide) in a living organism.

Suspended Sediment: The dispersal of larger solid particles (such as sand) in a fluid (such as water).


Dam Removal:

- Exposure Pathway 1 Short-term exposure of aquatic biota to suspended sediments flushed downstream in the water column
- Exposure Pathway 2 Long-term exposure of land-based biota and humans to exposed reservoir terrace deposits and river bank deposits
- Exposure Pathway 3 Long-term exposure of aquatic biota and humans to river bed sediment deposits
- Exposure Pathway 4 Long-term exposure of aquatic biota to marine, near shore sediment deposits

Dams Remain:

 Exposure Pathway 5 – Long-term exposure of aquatic biota and humans (via fish consumption) to reservoir sediments if the dams remain in-place (current conditions)

Figure 4.4.9-1: Multiple exposure pathways are present in the lower Klamath River, the Klamath estuary and the near shore of the Pacific Ocean that may allow contaminated sediments to cause adverse ecological or human health effects.

Source: CDM 2011e

4.4.9.2 Evaluation Process

The evaluation of the sediments trapped behind the Four Facilities generally followed guidelines and screening levels outlined by the Sediment Evaluation Framework (SEF) (Regional Sediment Evaluation Team 2009). This framework was developed for the Pacific Northwest to determine how best to manage or

dispose of sediments from dredging or similar projects where discharge of sediments back into an aquatic environment is proposed. The SEF process also addresses sediment characterization and disposal issues in accordance with applicable state and federal regulatory programs, and thus is helpful in informing decisions regarding the release of trapped sediments with dam removal.

For this evaluation process, four assessments were performed following the SEF:

- Level 1: Project definition and a review of existing information.
- Level 2A: Screening assessment to compare past and recently collected reservoir sediment chemistry data to available and appropriate sediment screening values, including chemical-specific marine water maximum levels, freshwater and marine water screening levels and marine water bioaccumulation triggers.
- Level 2B: Assessment of elutriate chemistry, sediment and elutriate laboratory bioassays, and laboratory bioaccumulation. Elutriates are waters containing chemicals that are released when bottom sediments are stirred into the water column, as would occur if the Klamath dams were removed.
- Special study of reservoir fish tissues: In response to public questions about chemicals detected in sediments, this study used screening levels for fish consumption to evaluate potential human exposure to bioaccumulative chemicals from eating resident reservoir fish.

Although the existing sediment data from the Klamath Hydroelectric Project reservoirs evaluated under Level 1 indicated limited potential for sediment toxicity (Shannon and Wilson 2006), the data were not considered sufficient to represent the spatial extent of the reservoirs or evaluate all chemicals of interest for the Secretarial Determination. The process moved to Level 2 and the special study.

To allow for a more comprehensive analysis as part of the Secretarial Determination process and to provide additional information, sediment and elutriate samples were collected from J.C. Boyle, Copco 1, and Iron Gate reservoirs as well as the Klamath River estuary between 2009 and 2010 and analyzed following SEF Levels 2A and 2B guidelines (Reclamation 2011n). Yellow perch (*Perca flavescens*) and bullhead (*Ameiurus spp*) were collected in 2010 from J.C. Boyle, Copco 1 and Iron Gate reservoirs and their tissues analyzed for chemical content (CDM 2011e).

4.4.9.3 Results

The 2009-2010 monitoring studies generated multiple lines of evidence that were used collectively to evaluate the quality of trapped reservoir sediments and their potential to affect the environment and human health under both current conditions and the removal of the Four Facilities. The evaluations were based upon potential impacts using the five exposure pathways discussed above.

No preclusions to releasing the reservoir sediments to the freshwater or marine environment were identified based on screening levels used in the SEF approach for this study. A number of chemicals and common classes of chemicals were detected; however, these results are neither surprising nor unusual. Many of the detected compounds have natural sources or are broadly distributed around the earth (e.g., metals and dioxins and furans), and are known to be present at trace or background concentrations in soils, streams and biota at many locations in the United States. Others are commonly found downstream of areas with significant histories of land disturbance and urbanization, industrial development, and agriculture.

Figure 4.4.9-2 summarizes the evaluation results for the five exposure pathways. The effects range from no effect (black dots) to limited or minor potential for effects from one or more chemicals (green dots). No significant adverse effects (red dot) were identified as a result of exposure to chemicals in sediments.

Absolute concentrations of most chemicals in the reservoir and estuary sediments were generally relatively low, with no consistent pattern of elevated chemical composition observed within a given reservoir or between reservoirs. No chemicals were identified at levels associated with significant adverse effects (see Figure 4.4.9-2). However, some compounds were identified at levels with potential to cause minor or limited adverse effects under the current, dams-in condition. In J.C. Boyle Reservoir, these included the metals arsenic, nickel, and

Figure 4.4.9-2: Summary results of the screening-level evaluation that was performed to identify potential adverse effects from exposures to reservoir sediments.

	Exposure Pathway	kie	No.	jidta jine bida ret	estra bic	jo jo
Pathway 1	Short-term exposure to sediments flushed downstream		•			
Pathway 2	Long-term exposure to exposed reservoir terrace and or river bank deposits		-	• (1)	(2)	
Pathway 3	Long-term exposure to new river channels and river bed deposits		-		•	
Pathway 4	Long-term exposure to marine / near shore deposits		•			
Pathway 5	Long-term exposure to reservoir sediments					

•	No adverse effects based on lines of evidence
•	One or more chemicals present, but at levels unlikely to cause adverse effects based on the lines of evidence
•	One or more chemicals present at levels with potential to cause minor or limited adverse effects based on the lines of evidence
•	At least one chemical detected at a level with potential for significant adverse effects based on the lines of evidence
	This exposure pathway is incomplete $^{(3)}$ or insignificant $^{(4)}$ for this receptor group

Note:

This does not include an evaluation of the physical effects (e.g., dissolved oxygen in the water, suspended sediment)

- (1) Qualitative evaluation conducted for this exposure pathway
- (2) Limited quantitative, along with qualitative evaluations conducted for this exposure pathway
- (3) Incomplete receptor group is unlikely to come in contact with sediment-associated contaminants under this exposure pathway
- (4) Insignificant exposure pathway not considered a major contributor to adverse effects in humans based on best professional judgment

Source: CDM 2011d

iron, the legacy organochlorine insecticides dieldrin and DDT (or its breakdown products), dioxins/furans. In Copco 1 and Iron Gate reservoirs, only nickel, iron, dioxins/furans were detected at levels with the potential to cause minor or limited adverse effects under current conditions. During dam removal, sediments would be entrained with inflowing water and reservoir water, mixed with normally occurring sediment loads, and widely dispersed throughout the marine near-shore environment. For example, screening level modeling suggest the dilution of the mobilized sediments at their initial point of release during dam removal would range from 48- to 66-fold. These actions would likely reduce the concentrations of the sediment and their associated chemicals. Therefore, exposure to the reduced chemical concentrations is not expected to exceed minor or limited adverse effects for Exposure Pathways 1-4 in Figure 4.4.9-2.

Bioassays (toxicity and bioaccumulation testing using sensitive aquatic organisms) supported the chemistry evaluation's conclusions, confirming only a minor or limited degree of effects that would be further reduced if trapped sediments were released as part of dam removal. Detailed planning for dam removal, together with permitting requirements, would more specifically address the few chemicals that exceeded relevant screening values.

Some chemicals also were present in reservoir fish at concentrations that exceeded one or more established screening levels, but were below levels that would indicate an unacceptable level of concern for effects on human health under current conditions or a dam removal alternative. These included the metals arsenic and mercury, the legacy insecticides DDT and dieldrin, and PCBs. These findings were generally consistent, regardless of reservoir or species examined.

Additionally, some chemicals had laboratory detection limits for sediments or tissues that were unable to meet several of the more protective screening levels considered (i.e., their detection limits were higher than the screening levels), making the results inclusive. To accommodate this concern, results from the other analyses such as bioassays, laboratory bioaccumulation and/or fish tissues were used to indicate effects from chemicals potentially in the sediment.

4.4.9.4 **Summary**

The lines of evidence used to evaluate Exposure Pathway 1 suggest that consideration of dam removal conditions (e.g., for dilution and mixing) may be necessary to address potential short-term adverse effects for freshwater organisms that could occur during the initial period following dam removal, especially at locations immediately downstream of the dams, where the concentration of suspended sediments would be the highest (Reclamation 2011n). The direct physical effects to fish from the released sediments (see Section 4.1.3) are expected to be greater than short-term sediment toxicity during the dam removal period. Under Exposure Pathways 2 through 4, the lines of evidence suggest long-term adverse effects in the downstream areas and new river channel are unlikely from the chemicals present as a result of dam removal (CDM 2011e).

Exposure Pathway 5 evaluates "dams remain" conditions. This is the existing condition, where resident aquatic biota experience long-term exposure to undiluted reservoir sediments. The results of the evaluation suggest that this exposure pathway may be associated with minor adverse effects to both freshwater organisms and humans, based on: (1) the presence of a few chemicals in sediment and fish tissue that exceed screening levels; (2) minor sediment toxicity to benthic organisms in portions of one reservoir; and (3) the long-term exposure of resident organisms (because they cannot migrate out of the reservoirs) resulting in higher exposures to chemicals that bioaccumulate (CDM 2011e).

Overall, on the basis of the extensive information gathered in this study and evaluation of multiple lines of evidence, the Four Facilities' reservoir sediments can be considered relatively clean, and chemical concentrations in the

Figure 4.4.9-3: Sediment chemistry sampling in J.C. Boyle Reservoir, Oregon, during October, 2009

Figure 4.4.9-4: A large bullhead sampled for contaminants in fish tissues from Iron Gate Reservoir during September, 2010

Figure 4.4.9-5: Yellow perch sampled for contaminants in fish tissues from Copco 1 Reservoir during September, 2010

SECTION 4 • Secretarial Determination Summary of Findings

4.4.9 Chemicals in Reservoir Sediments

sediments are not expected to preclude downstream release. In the future, if there is an Affirmative Determination, detailed plans and permitting processes for dam removal would consider conditions such as the expected dilution and mixing in more detail.

4.4.10 Algal Toxins

Algae are critical and natural components of riverine and lacustrine (lake-like) ecosystems, affecting food web dynamics as well as physical water quality parameters (e.g., dissolved oxygen, pH, turbidity, and nutrients) through rates of photosynthesis, respiration, and decay of dead algal cells (Horne and Goldman 1994). Cyanobacteria (blue-green algae) are also photosynthetic and can often occur in large seasonal blooms that form floating green scums at the water surface (see Figure 4.4.10-1). Large-scale cyanobacterial blooms are likely to be more prevalent in lacustrine environments where turbulence is low, nutrients are abundant, and light availability and water temperature are high. In addition to negatively influencing water quality, large blooms of some cyanobacteria species, such as Microcystis aeruginosa, can produce a toxin (microcystin) in concentrations that become an ecological and public health concern. This toxin can cause irritation, sickness, or in extreme cases, death to exposed organisms, including humans, pets, or livestock (World Health Organization [WHO] 1999). Microcystin can also bioaccumulate (the accumulation of a substance, such as a pesticide, in a living organism) in the tissues of aquatic organisms, such as shellfish, fish, and marine mammals (Kann 2008, Miller et al. 2010, Kann et al. 2011, Vanderkooi et al. 2010), potentially harming these organisms as well as the humans that consume them (see Algal Toxins and Aquatic Biota sidebar in Section 4.1, Expected Effects of Dam Removal and KBRA on Physical, Chemical, and Biological Processes that Support Salmonid and Other Fish Populations).

Figure 4.4.10-1: Biologist collects water samples from Iron Gate Reservoir during a summer algae bloom. (Photo courtesy of Karuk Tribe.)

Upper Klamath Lake has large seasonal blooms of cyanobacteria, primarily composed of the species *Aphanizomenon flos-aquae*. This strain of this species found in Upper Klamath Lake typically does not produce toxins. *M. aeruginosa* blooms also occur in the lake in some years and are believed to have been responsible for the production of microcystin at concentrations equal to or greater than the WHO limit for drinking water (1 μ g/L) and greater than the Oregon Department of Public Health guidelines for issuing public health advisories (8 μ g/L) during 2007–2008 (Vanderkooi et al. 2010). Both algal species are exported from Upper Klamath Lake through the Link River and downstream into the Keno Impoundment (including Lake Ewauna).

Large algal blooms also occur in the calm, lacustrine environments of Copco 1 and Iron Gate reservoirs during the summer months (see Figure 4.4.10-2). The blooms result in reservoir chlorophyll-a concentrations that are 10 to 100 times greater than those in the mainstem river and exceed the California Regional Water Quality

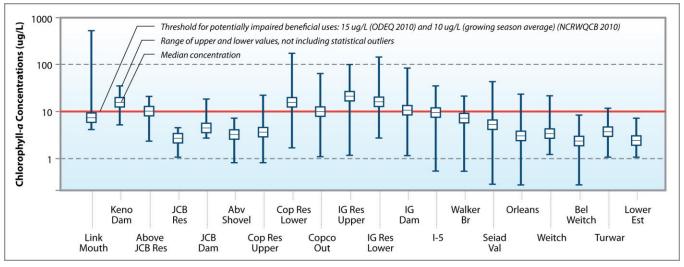

Control Board's threshold for potentially impaired beneficial uses (see Figure 4.4.10-3). Data collected from 2004 through 2011 indicate that high *M. aeruginosa* cell counts and microcystin concentrations occur on an annual basis during summer months in Copco 1 and Iron Gate reservoirs (Kann 2007a–2007d, Jacoby and Kann 2007, Kann and Corum 2009, Raymond 2010b, NCRWQCB 2010b), and regularly exceed WHO numeric targets (Kann and Corum 2009) and California voluntary guidance levels (State Water Resources Control Board,

Figure 4.4.10-2: Dense summer and fall blue-green algae (Cyanobacteria) blooms in Iron Gate Reservoir produce toxic microcystin resulting in poor water quality for fish and public health posting by the State of California. (Photo courtesy of Karuk Tribe.)

California Department of Public Health and Office of Environmental Health and Hazard Assessment 2010) in these waterbodies.

Figure 4.4.10-3: Median chlorophyll-a concentrations in Copco 1 and Iron Gate reservoirs are two to ten times greater than those documented in the mainstem river and exceed the threshold for potentially impaired beneficial uses for biota and humans, including aquatic habitat, recreation, agricultural supply, and fishing. Keno Impoundment (including Lake Ewauna) concentrations are similarly high.

Source: NCRWQCB 2010b.

Figure 4.4.10-4: Health advisory postings can occur in June—October during intense blue-green algal blooms in Copco 1 and Iron Gate reservoirs. These blooms can be transported into downstream reaches of the Klamath River.

Health Effects

During large blooms, health advisories warn against recreational use, drinking, and cooking with water from Copco 1 and Iron Gate reservoirs, as well as consumption of fish that are exposed to the toxins (see Figure 4.4.10-4). Large blooms of *M. aeruginosa* could have also been regularly transported to downstream river reaches and prompt similar health advisories in the lower Klamath River (Kann 2010b) and, in some cases, even the Klamath Estuary.

Tribal Effects

The seasonal presence of algal toxins in the Klamath River has impaired the ability of the Klamath, Resighini Rancheria, Karuk, Hoopa, and Yurok Indian tribes to use the river for cultural purposes. Known and/or perceived concerns over health risks associated with seasonal algal toxins have resulted in the alteration of traditional cultural practices, such as gathering and preparation of basket materials and plants, fishing, ceremonial bathing, and ingestion of river water (see Section 4.4.2, *Tribal*). Currently, drinking river water as a ceremonial practice often cannot occur because blooms of *M. aeruginosa* result in frequent summertime health advisories along long stretches of the river below Iron Gate Dam.

Algae Effects from Dam Removal and the KBRA

Removal of the dams would eliminate the lacustrine environment that currently supports ideal growth conditions for toxin-producing nuisance algal species such as *M. aeruginosa*. While relatively small amounts of algal toxins and chlorophyll-*a* produced in Upper Klamath Lake may still be transported into the Klamath River downstream of Keno Dam, existing data indicate that concentrations of microcystin leaving Upper Klamath Lake have rarely, if ever, been measured at levels that exceed water quality objectives for Oregon and California. In contrast, cyanobacterial blooms growing in Iron Gate and Copco 1 reservoirs have been documented as the cause of observed public health guideline exceedances within the Klamath Hydroelectric Project reservoirs and the Klamath River downstream of Iron Gate Dam. With dam removal, the production of toxins and chlorophyll-*a* associated with suspended algae in Copco 1 and Iron Gate reservoirs would be eliminated.

Additionally, resource management actions implemented under KBRA, such as off-stream livestock watering, grazing management, floodplain rehabilitation, livestock exclusion, and road decommissioning in the upper Klamath River Basin, would decrease nutrient loading to Upper Klamath Lake (see Section 4.1.1.3, Water Quality — Nutrients), which would decrease the incidence of toxic cyanobacterial algal blooms and high chlorophyll-a levels in the lake. Implementation of the KBRA would accelerate the pace of achieving these water quality improvements and increase the likelihood of approaching TMDL targets for chlorophyll-a (see sidebar) by the end of the analysis period (i.e., 2061) (WQST 2011).

Summary

In summary, dam removal would eliminate large, seasonal blooms of nuisance toxic algae in Copco 1 and Iron Gate reservoirs and facilitate the use of the Klamath River for multiple human health related beneficial uses, including traditional Indian cultural practices, recreation, agriculture, shellfish harvesting, and commercial and sport fishing (see sidebar).

More on Beneficial Uses and TMDLs in the Klamath River Basin

As described in Section 4.1, Expected Effects of Dam Removal and KBRA on Physical, Chemical, and Biological Processes that Support Salmonid and other Fish Populations, the Klamath River is included on the 303(d) lists for both California and Oregon. In addition to not meeting numerous fisheries-related beneficial uses described in Section 4.1, the Klamath River does not meet the following human-health related beneficial uses due to water quality impairments, including the presence of algal toxins (i.e., microcystin):

- Indian Culture
- Water Contact Recreation
- Non-Contact Water Recreation
- Municipal & Domestic Supply
- Shellfish Harvesting
- Aquaculture
- Agricultural Supply
- Commercial and Sport Fishing

The Oregon, California, and Hoopa Valley Tribe criteria for posting public health advisories for recreational use of water are all 40,000 cells/mL *M. aeruginosa or* 8 µg/L microcystin. The Klamath River TMDLs include water quality targets thresholds of 20,000 cells/L *M. aeruginosa* or 4 µg/L microcystin for the California reservoirs during the growing season.

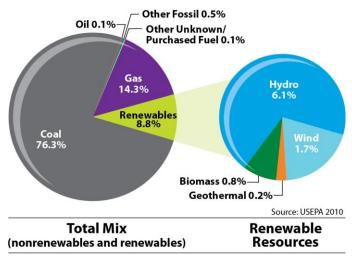
This page intentionally left blank.

4.4.11 Greenhouse Gases

A quantitative greenhouse gas (GHG) emissions inventory was completed to estimate emissions from power replacement following the removal of the Four Facilities. Additionally, the emissions inventory calculated the offset provided by the elimination of natural reservoir methane emissions that would no longer be produced following their removal. The complete analysis is presented in the *Greenhouse Gas Emissions from Power Replacement, Technical Memorandum* (CDM 2011a).

Greenhouse gases from replacement power include carbon dioxide (CO_2), methane (CH_4), and nitrous oxide (N_2O); typical byproducts of combustion. Each GHG contributes to climate change differently, as expressed by its global warming potential (GWP). GHG emissions are presented as carbon dioxide equivalent (CO_2e) emissions, which means that for a given mixture of GHG, the amount of CO_2 would have the same GWP when measured over a specific timescale. CO_2e is determined by multiplying the mass of each GHG by its GWP¹. This analysis uses the GWP figures from the Intergovernmental Panel on Climate Change (IPCC) Second Assessment Report (IPCC 1996) for a 100-year time period to estimate CO_2e .

Emission factors were developed using the Emissions & Generation Resource Integrated Database (eGRID) (USEPA 2010) for 2007. Using eGRID data was consistent with inventory requirements of multiple voluntary and mandatory reporting protocols and provides a conservative (worst-case) estimate of emissions.


The average amount of electricity generated and consequently needing replacement if the Four Facilities were removed was derived from the Bureau of Reclamation's Hydropower Benefits Technical Report: For the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon (Reclamation 2011f). Monthly generation data was analyzed for 50 years of data (from 2012 to 2061). To bookend the GHG emissions quantification between a high and low emissions outcome, this analysis presents two different scenarios for the replacement of lost hydropower as discussed below.

257

As an example, CH_4 has a GWP of 21, as specified in the Intergovernmental Panel on Climate Change's Second Assessment Report (1996). One metric ton of CH_4 is equal to 21 metric tons of CO_2 e (1 metric ton x 21).

4.4.11 Greenhouse Gases

Figure 4.4.11-1: PacifiCorp Power Control Area Generation Resource Mix (as of 2007)

Source: USEPA 2010

4.4.11.1 No Change to PacifiCorp Resource Generation Mix

This scenario assumes that there would be no change in the current renewable portfolio for the PacifiCorp Power Control Area (PCA). A PCA is a region of the power grid in which all power plants are centrally dispatched. As shown in Figure 4.4.11-1, the 2007 electricity generation resource mix for the PacifiCorp PCA (estimated from eGRID) is dominated by coal (76 percent), natural gas (14 percent), and hydroelectricity (6 percent), with the remainder made up of smaller sources such as wind, biomass and geothermal (USEPA 2010). The data provided is the most recent data available from the USEPA (2010) and represents the resource mix that would be available if any replacement energy was obtained from PacifiCorp's resource mix as of 2007.

4.4.11.2 Renewable Portfolio Goals Met By PacifiCorp

A second scenario assumes that PacifiCorp complies with California's Renewable Portfolio Standard (RPS) goal in 2020 when the dams would be removed. PacifiCorp is under obligation to meet the RPS goals in California and Oregon. The RPS goal for California is to have 33 percent of an electricity seller's load served with renewable power by 2020 (Executive Order S-14-08; and SBX1 2), while Oregon's RPS goal is for 25 percent of a utility's retail sales of electricity to be from renewable energy by 2025 (Senate Bill 838). While PacifiCorp serves customers in both states, the company would be required to comply with California's 33 percent RPS goal for their entire portfolio in order to sell electricity in the state.

4.4.11.3 Greenhouse Gas Emission Quantification

On average the Four Facilities are estimated to generate 909,835 MWh annually over the 42-year period after dam removal (2020 through 2061) (Reclamation 2011g). This generation number is higher than has been reported in the past for the Four Facilities because it assumes efficiency upgrades to turbines and generators that PacifiCorp is currently making and would continue to make in the future if the facilities were to remain in place until 2061 (Reclamation 2011g). With removal of the Four Facilities, approximately 526,000 metric ton of carbon dioxide equivalent (MTCO₂e) per year would be emitted from replacement power assuming PacifiCorp's current resource generation mix. This number would decrease to approximately 451,000 MTCO₂e per year (14 percent reduction) under the scenario where PacifiCorp meets California's RPS goal. Removal of the reservoirs would reduce these emissions by approximately 4,000 to 14,000 MTCO₂e per year (less than 1 percent) based on the reduction of methane gas emitted from reservoir bottom sediments (Karuk Tribe 2006).

To place the scope of the GHG emissions from replacement power into context, the Bay Area Air Quality Management District and the South Coast Air Quality Management District, both in California, have established significance thresholds of 10,000 MTCO₂e/year. Although not finalized, the Council on Environmental Quality recommended that climate change be discussed in any National Environmental Policy Act analysis if GHG emissions exceed 25,000 MTCO₂e per year.

The California Air Resources Board (CARB) developed some metrics to convert one million MTCO₂e to familiar equivalents. CARB estimated that one million MTCO₂e/year would be equivalent to the following (CARB 2007):

- Annual emissions from 1.5 state-of-the-art 500 MW combined-cycle gasfired power plants.
- 114 million gallons of gasoline per year
- 2.3 million barrels of oil per year

Removing the Four Facilities would result in a substantial increase in GHG emissions from replacement power sources. Although the reservoirs do emit the GHG methane, removing the reservoirs would offset power replacement GHG by less than 1 percent.

4.4.11 Greenhouse Gases

This page intentionally left blank.

4.4.12 Societal Views on Dam Removal and the KBRA

Studies conducted for the Secretarial Determination did not include separate public opinion surveys; however, expressions of individuals and households views on dam removal and ecosystem restoration in the Klamath Basin occurred in two different activities during the timeframe of these studies. As part of these activities, the questions used to establish context for scenarios presented in the nonuse survey (see Section 4.4.1.1, *National Economic Development*) conducted in 2011 included questions that measured public views on dam removal and ecosystem restoration. Secondly, in 2010, ballot measures in Klamath County, Oregon and Siskiyou County, California addressed the proposed actions of the KBRA and dam removal respectively. The ballot measures did not ask the same questions as the nonuse survey, and the nonuse survey questions represent responses by household, not by individuals. These two activities representing dam removal and the KBRA are presented in this section, to provide additional information regarding the public's views on the decision before the Secretary of the Interior.

The NED benefits from dam removal, including use and nonuse values, are discussed in detail in Section 4.4.1, *Economics*. The nonuse benefit estimates are based on a stated preference (SP) survey of households throughout the United States (RTI International 2011). The survey was mailed to a random sample of U.S. households. To capture potential differences among respondents based on proximity to the Klamath River, the overall target population sampled was divided into three geographic strata: the 12-county area around the Klamath River¹, the rest of Oregon and California, and the rest of the United States. Table 4.4.12-1 below shows the survey response rate for each stratum. The Klamath survey response rates were slightly higher than what was projected at the survey development and approval stages. As such, more than a sufficient number of responses were received to allow for statistically valid estimates to be computed.

¹ The 12-county Klamath area includes 5 counties in southern Oregon (Lake, Klamath, Douglas, Jackson, and Josephine counties) and 7 counties in northern California (Modoc, Siskiyou, Del Norte, Humboldt, Trinity, Shasta, and Tehama counties).

Table 4.4.12-1: Klamath Nonuse Value Survey Response Rates

Strata	Total Number of Surveys Mailed (less undeliverables)	Number of Paper Survey Responses	Number of Web Survey Responses	Total Responses	Response Rate ¹
12-County Klamath area	2,496	985	42	1,027	41.1%
Rest of CA & OR (Excluding the 12-County Klamath Area)	3,932	1,105	76	1,181	30.0%
Rest of the U.S. (Excluding CA & OR)	3,849	1,100	64	1,164	30.2%
Total	10,277	3,190	182	3,372	32.8%

¹ Response rate = total surveys completed/(total surveys mailed – undeliverable surveys).

Nonuse benefits to households that value Klamath Basin environmental restoration, as measured by willingness to pay (WTP), are a monetary expression of preferences by the survey respondents. The expression of WTP requires a respondent to first understand how the good or service under consideration affects their satisfaction in the context of all goods and services the respondent "consumes." A respondent must then translate their satisfaction into a monetary value that can be compared to the payment proposed in the survey for an Action plan. The nonuse survey included a number of questions that helped establish the context for scenarios to restore the Klamath River Basin that were subsequently presented.

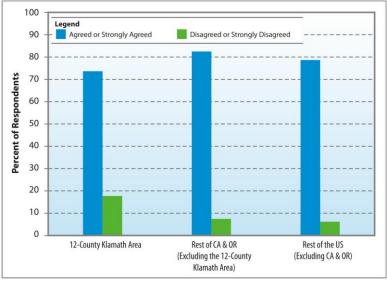
The survey also allowed individuals to express their preferences in terms of agreement or disagreement with statements of concern about declines in the number of fish in the Klamath River and risk of extinction. Responses to statements of concern with agreement or disagreement are indicators of value in nonmonetary terms that do not require the extra step of translating preferences into willingness to pay. Therefore, agreement with statements of concern on the survey cannot be used to place a monetary value on dam removal, but can be used as a general measure of views on dam removal and represent qualitative indicators of value.

4.4.12.1 Respondent Concern Regarding the Declines of Chinook Salmon and Steelhead in the Klamath Basin

The nonuse survey included a question asking respondents about their level of concern with declines in the number of Chinook salmon and steelhead trout that return to the Klamath each year². Approximately 73.8 percent of those responding to the survey from the 12 county Klamath area agreed or strongly agreed with the statement of concern while 17.9 percent disagreed or strongly disagreed with the statement, suggesting that more than four times the number of respondents are concerned about declining Chinook salmon populations in the Klamath River compared to those that are not concerned.

The actual wording of the question was: Please rate how much you agree or disagree with the following statement. I am concerned about declines in the number of Chinook salmon and steelhead trout that return to the Klamath River each year. Choices of responses were: Strongly agree, Agree, Disagree, Strongly disagree, and No opinion.

The survey results were similar for concern about Chinook salmon decline by respondents from the rest of Oregon and California and the rest of the United States. About 82.5 percent of those responding to the survey from the rest of Oregon and California agreed or strongly agreed with the statement of concern while 7.6 percent disagreed or strongly disagreed with the statement. A total of 78.8 percent of those responding from the rest of the United States agreed or strongly agreed with the statement of concern while only 6.2 percent disagreed or strongly disagreed. The survey results indicate that there is overall concern about declines in Chinook salmon regardless of where the respondents live. Survey results regarding concern about Chinook salmon and steelhead trout are presented graphically in Figure 4.4.12-1.


4.4.12.2 Respondent Concern Regarding the Potential Extinction of Shortnose and Lost River Suckers in the Klamath Basin

The nonuse value survey also included a question asking about agreement with concern that shortnose and Lost River suckers are at very high risk of extinction³. An estimated 50.4 percent of those responding to the survey from the 12 county

Klamath area agreed or strongly agreed with the statement of concern while 34.0 percent disagreed or strongly disagreed with the statement. The statement of concern was not as overwhelming as for Chinook salmon, but the number of respondents that were concerned was nearly 50 percent higher than those who disagreed with the statement of concern.

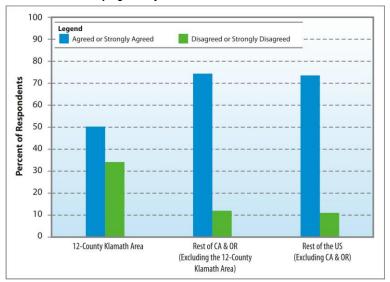
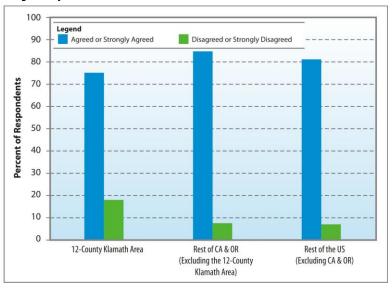

About 74.3 percent of those responding to the survey from the rest of Oregon and California agreed or strongly agreed with the statement of concern regarding shortnose and Lost River suckers at a very high risk of extinction while 11.9 percent disagreed or strongly disagreed with the statement. A total of 73.9 percent of those responding from the rest of the United States agreed or strongly agreed with the statement of concern while 10.8 percent disagreed or strongly disagreed. Survey results regarding concern

Figure 4.4.12-1: Survey results regarding concern about the declines in Chinook salmon and steelhead that return to the Klamath Basin.

Source: RTI International 2011

Figure 4.4.12-2: Survey results regarding concern about the shortnose and Lost River suckers that are at very high risk of extinction.


Source: RTI International 2011

³ The actual wording of the question was: Please rate how much you agree or disagree with the following statement. I am concerned about the shortnose and Lost River suckers that are at very high risk of extinction. Choices of responses were: Strongly agree, Agree, Disagree, Strongly disagree, and No opinion.

about shortnose and Lost River suckers are presented graphically in Figure 4.4.12-2.

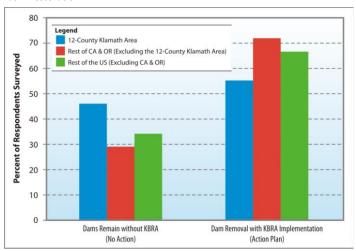

4.4.12.3 Respondent Concern Regarding the Potential Extinction of Klamath Coho Salmon

Figure 4.4.12-3: Survey results regarding concern about the Klamath coho salmon that are at high risk of extinction.

Source: RTI International 2011

Figure 4.4.12-4: Survey results regarding an Action plan for dam removal and Basin Restoration.

Source: RTI International 2011

The nonuse value survey also included a question asking about agreement with concern that Klamath coho salmon are at a high risk of extinction⁴. An estimated 75.6 percent of those responding to the survey from the 12 county Klamath area agreed or strongly agreed with the statement of concern while 17.7 percent disagreed or strongly disagreed with the statement. The statement of concern for Klamath coho salmon was nearly identical as for Chinook salmon and steelhead trout.

About 85.2 percent of those responding to the survey from the rest of Oregon and California agreed or strongly agreed with the statement of concern regarding Klamath coho salmon at a high risk of extinction while 7.2 percent disagreed or strongly disagreed with the statement. A total of 81.2 percent of those responding from the rest of the United States agreed or strongly agreed with the statement of concern while 6.9 percent disagreed or strongly disagreed. Survey results regarding concern about Klamath coho salmon are presented graphically in Figure 4.4.12-3.

4.4.12.4 Respondent Preference Regarding an Action Plan for Dam Removal and Basin Restoration

The majority of respondents surveyed indicated that an Action plan to remove the dams and restore the basin was preferred to No action. No action was defined as not implementing an agreement that includes dam removal, fish restoration, and a water sharing agreement. A total of 54.7 percent of respondents from the 12-County Klamath area voted for an Action plan, 71.3 percent of respondents from the rest of Oregon and California voted for an Action plan, and 66.3 percent of respondents from the rest of the United States voted for an Action plan (see Figure 4.4.12-4). These results suggest that a substantial number of households place

⁴ The actual wording of the question was: Please rate how much you agree or disagree with the following statement. I am concerned about the Klamath coho salmon that are at high risk of extinction. Choices of responses were: Strongly agree, Agree, Disagree, Strongly disagree, and No opinion.

a positive value on implementing an Action plan to improve the environmental resources in the Klamath River Basin.

4.4.12.5 Other Indication of Public Views on Dam Removal and the KBRA

Other indicators of support or non-support for Klamath Basin restoration or dam removal include advisory votes on KBRA participation in Klamath County, Oregon and dam removal in Siskiyou County, California, held on November 2, 2010. Klamath County Measure 18-80 asked if Klamath County should discontinue its participation as one of the parties in the KBRA agreement. A yes vote would advise officials to stop participating in the KBRA while a no vote would advise officials to stay at the negotiating table. Measure 18-80 failed with 48.3 percent voting yes and 51.7 percent voting no. The results of measure 18-80 indicated that, while close, a majority of Klamath County voters expressed support for continued participation with the KBRA. Oregon ballot measures require wording where a "yes" vote approves or adopts a new position. Klamath County signed the KBRA in February 2010 and therefore voters needed to vote "yes" if they wanted change from this earlier position.

Siskiyou County Measure G asked if the Klamath River Dams (Iron Gate, Copco 1, and Copco 2) and the associated hydroelectric facilities should be removed. A vote in favor was for removing the dams and a vote against was for keeping the dams. Measure G failed by a vote of 78.84 percent against and 21.16 percent for the measure. This vote indicated that in Siskiyou County voters strongly do not favor dam removal.

SECTION 4 • Secretarial Determination Findings of Technical Studies 4.4.12 Societal Views on Dam Removal and the KBRA

This page intentionally left blank.

Section 5 Summary and Findings

This Overview Report, and numerous technical reports, were developed for the Secretarial Determination by scientists and engineers from Federal agencies working within the Department of the Interior (DOI), the Department of Commerce (DOC), the U.S. Department of Agriculture (USDA), and the U.S. Environmental Protection Agency (USEPA). These agencies worked collaboratively with state agencies from California and Oregon through nine subteams of the Technical Management Team (TMT) covering broad topical areas of the Secretarial Determination process. The TMT developed and carried out scientific, engineering, and other technical studies to fill information gaps and address the four questions which inform the Klamath Secretarial Determination identified in the KHSA. These questions are: (1) would dam removal and KBRA implementation advance salmonid fisheries and other fisheries in the Klamath Basin; (2) what would dam removal entail, what mitigation measures may be needed, and what would these actions cost; (3) what are the major potential risks and uncertainties associated with dam removal; and (4) would dam removal and implementation of the KBRA be in the public interest?

The TMT concluded that dam removal and implementation of the KBRA would provide an opportunity to bring significant additional jobs and strengthen local economies in the Klamath Basin for reasons that include improved fish populations, including salmoniods; increased opportunities and income from healthier recreational, commercial, and sport fisheries; increased agricultural output and income due to water delivery certainty; increased refuge recreation also due to water delivery certainty; and increased spending in the region associated with dam removal and implementation of programs in the KBRA. Additionally, dam removal and KBRA implementation would help protect tribal trust resources and address various social, economic, cultural, and health problems identified by the six Federally recognized Klamath Basin tribes.

A summary of major findings from the TMT studies (the reports of which are shown in Table 3-1), and findings from other existing reports (shown in Section 6, *References*), are summarized for these four questions in this section.

Fish modeling results show that dam removal, combined with restoration of aquatic habitats, as anticipated in the KBRA, is expected to increase the annual production of adult Chinook salmon by an average of 83 percent beginning in 2020 with dam removal.

5.1 WILL DAM REMOVAL AND KBRA ADVANCE RESTORATION OF SALMONID AND OTHER FISHERIES OF THE KLAMATH BASIN OVER A 50-YEAR TIME FRAME?

Anadromous fish populations in the Klamath Basin are in decline, primarily as a result of blocked access to their historical habitat, overfishing, degraded freshwater and marine habitat, disease, water quality impairments (including elevated water temperature), and altered hydrology. The TMT concluded that dam removal and KBRA implementation would improve salmonid fish (salmon, steelhead, and redband trout) populations and associated fisheries primarily by increasing access to historical habitat and thermal refuge areas in the upper basin, restoring mainstem and tributary habitat, and improving key biological and physical factors heavily influencing the health and survival of these fish populations (e.g. hydrology, sediment transport, water temperature, and water quality).

In the short-term, reservoir drawdown associated with dam removal would result in the release of high suspended sediment concentrations (SSCs). High SSCs are expected to result in lethal and sub-lethal effects on a specific part of fish populations, in particular, coho salmon smolts and steelhead trout in the mainstem Klamath River would be affected during the peak sediment release from early January through March 15. However, the timing of reservoir drawdown was selected to coincide with periods of naturally high SSCs in the Klamath River, as aquatic species have already adapted to higher winter SSCs. In addition, based on the distribution and life-history timing of aquatic species in the basin, only a portion of some populations are likely to be present in the mainstem Klamath River during the period of peak SSCs. Most salmon and steelhead life stages would be in tributaries, further downstream where SSCs would be diluted by tributary streams and rivers, or in the Pacific Ocean.

Estimates of mortality for all life stages of salmon (Chinook and coho) are expected to be less than 10 percent from high SSCs during dam removal. Estimated mortality for adult and juvenile steelhead would be about 10 to 15 percent; in a worse case situation, mortality of adult steelhead could reach 28 percent.

The TMT performed an extensive evaluation of the feasibility of reservoir sediment removal through dredging. Based on a number of factors, including the marginal reductions in mortality of fish; the land disturbance that would occur for sediment containment structures; the potential disturbance of cultural resources; and, the high cost, dredging reservoir bottom sediments was deemed infeasible. In lieu of dredging, mitigation measures (e.g. trapping and relocating potentially affected fish during dam removal) were identified to minimize effects to aquatic species from high SSCs.

Fish modeling results show that dam removal, combined with restoration of aquatic habitats as anticipated in the KBRA, is expected to increase the annual production of adult Chinook salmon by an average of 83 percent beginning with dam removal in 2020. The ocean commercial and sport harvests of Chinook

salmon are forecasted to increase by an annual average of 50 percent, while the in-river tribal harvest would increase by an annual average of 59 percent, and the in-river recreational fishery would increase by an annual average of 9 percent after dam removal. A fisheries expert panel convened to independently assess whether dam removal would advance Klamath Basin Chinook fisheries concluded that dam removal and implementation of the KBRA would better address the core factors that affect fish populations and would have a much higher likelihood of success than continuing under current conditions. Overall, dam removal and KBRA implementation would be a major step forward to restoring anadromous fish and in the conservation of native fish populations in the Klamath Basin. Table 5-1 summarizes the main long-term benefits for salmonid species as a result of dam removal and implementation of the KBRA.

Table 5-1: Long-Term Benefits for Salmonid Restoration from Dam Removal and KBRA Implementation

Water Quality Benefits

Accelerates when the river meets Oregon and California water temperature, nutrient, dissolved oxygen, pH, and chlorophyll-a TMDL allocations.

Largely eliminates in 2020 elevated late summer/fall river water temperatures in and below the Hydroelectric Reach.

Largely eliminates in 2020 algal toxins, low dissolved oxygen, and high pH that are produced in Copco 1 and Iron Gate reservoirs and transported downstream.

Habitat Benefits

Provides anadromous fish with up to 420 miles of currently blocked riverine habitat in the upper basin.

Provides access to thermal refuge areas (springs and cool-water tributaries) in the upper basin that would help buffer increased water temperatures associated with future climate change.

Provides for natural recruitment of spawning gravel and river processes within and below the Hydroelectric Reach.

KBRA Fisheries Restoration Plan accelerates restoration of fish habitat throughout the basin starting in 2012.

Expands opportunity to create springtime flushing flows (KBRA Environmental Water Program) to increase flow variability and sediment bed movement, which are anticipated to reduce juvenile salmonid disease.

Reduces incidence of salmon disease by decreasing crowding of adult salmon through expanded migration and spawning areas.

KBRA Fisheries Reintroduction and Management Plan accelerates the effective use of the upper basin by salmonids.

Improves base flows for salmonids, particularly in drought years, through KBRA Water Resources Program.

Eliminates adverse effects of hydroelectric peaking and stranding of fish in the Hydroelectric Reach.

With dam removal, coho salmon would be expected to rapidly recolonize habitat upstream of Iron Gate Dam. Assuming coho salmon distribution would extend up to Spencer Creek after dam removal, coho salmon from the upper Klamath River population would reclaim 68 miles of habitat: approximately 45 miles in the mainstem Klamath River and tributaries and 23 miles currently inundated by the reservoirs. Dam removal and KBRA implementation are also expected to result in significant improvements to mainstem Klamath River hydrology, instream habitat, and water quality. In addition, dam removal and KBRA actions are expected to decrease the incidence of disease downstream of Iron Gate Dam thereby improving coho populations throughout the Klamath Basin. Populations currently in the vicinity of Iron Gate Dam are most affected by dam-related factors, and these populations would receive the most benefits from dam removal.

The benefits of dam removal and KBRA implementation for coho salmon go beyond increased abundance. Colonization of the Klamath River between Keno and Iron Gate dams by the upper Klamath coho salmon population would likely improve the viability of the Southern Oregon/Northern California Coast Evolutionary Significant Unit (ESU) by increasing its diversity, productivity, and spatial distribution. In general, as habitat availability, quality, and diversity increase for an ESU, so does the resilience of the population, reducing the risk of extinction and increasing chances for recovery.

Dam removal would reestablish steelhead upstream of Iron Gate Dam and increase habitat available to this species by 420 stream miles. Because of their ability to navigate steeper gradient channels and spawn in smaller, intermittent streams, and their ability to withstand a wide range of water temperatures, steelhead distribution in the basin would be expected to expand to a greater degree than that of any other anadromous salmonid species, thereby increasing steelhead abundance in the Klamath Basin. This conclusion is based on several factors including the likelihood of steelhead having access to substantial new habitat that will undergo restoration, the fact that other similar species (resident redband trout) are doing well in the upstream habitat, and the fact that steelhead are currently at lower abundances than historical values but not yet rare. In general, removing dams and implementing KBRA would likely support a greater number of spawning areas, increase genetic diversity, and allow for a wider variety of life history patterns, which could increase the population's resilience.

Dam removal would increase free-flowing redband/rainbow trout habitat downstream of Keno Dam by restoring river channel habitat inundated by reservoirs, eliminating extreme daily flow and water temperature fluctuations in the J.C. Boyle Peaking Reach, and increasing flows in the J.C. Boyle Bypass Reach. This would expand the total distribution of a resident trophy-trout fishery in the Klamath Basin by approximately seven times. Benefits to redband/rainbow trout in tributaries to Upper Klamath Lake would be realized by habitat improvements stemming from implementation of the KBRA, and are expected to increase trout productivity upstream of Upper Klamath Lake.

Dam removal and implementation of the KBRA would have important benefits for other fish species in the Klamath Basin as summarized in Table 5-2.

Table 5-2: Benefits to Other Fish Species from Dam Removal and KBRA Implementation

Species	Current Status	Benefits of Dam Removal and KBRA
Short nose and	Both species are listed as endangered under ESA	KBRA implementation would provide greater promise for
Lost River Suckers in the upper Klamath Basin	and are declining under current conditions. Both species could become extinct in the Klamath Basin unless substantial recruitment events occur.	preventing extinction of these species, and for increasing overall population abundance and productivity, than would occur if the dams were left place and KBRA was not implemented. Implementation of KBRA would improve sucker habitat in Upper Klamath Lake, its tributaries, and wetlands that support multiple life stages of these species.
Bull Trout in the upper Klamath Basin	Bull trout are currently listed as threatened under the ESA. In the upper Klamath Basin, this species is confined to the far upper reaches of the watershed. Bull trout populations in the Klamath Basin face a high risk of extirpation and are considered extinct in California. Threats to bull trout in the Klamath Basin include habitat loss and degradation caused by reduced water quality, land use, water diversions, roads, and non-native fishes.	KBRA implementation would likely accelerate compliance with TMDL water quality objectives in the upper basin, thereby improving conditions for this species and increasing overall population abundance and spatial distribution.
Pacific Lamprey in the Klamath Main stem	Pacific lamprey have experienced sharp declines in the Klamath River and was petitioned for listing under the ESA in 2003. The Four facilities have blocked the range of Pacific lamprey to areas upstream of Iron Gate Dam.	Removal of the dams is considered to be the only feasible method for expanding the current range of Pacific lamprey above Iron Gate Dam. Dam removal with KBRA implementation could increase Pacific lamprey production by up to 14 percent compared with dams remaining in place. The increase production could potentially be more if habitat in the upper Klamath Basin is accessible and suitable.
Native Lamprey present in the mainstem and upper basin (five resident species)	Native lamprey has experienced sharp declines in the Klamath River and upper basin with three species petitioned for listing under the ESA in 2003.	Dam removal would eliminate the adverse effects of power peaking on resident lamprey species in the Klamath Hydroelectric Reach. Dam removal and KBRA implementation would likely increase lamprey populations as physical, chemical, and biological processes of the Klamath River were restored. Capacity for the freshwater-resident lamprey species in the upper Klamath Basin may increase with implementation of the KBRA aquatic habitat restoration measures.
Eulachon in the Klamath estuary	Eulachon were historically abundant, but currently are rarely observed in the lower Klamath River and Estuary. The Southern Distinct Population Segment of eulachon, which includes the Klamath River, is ESA listed as threatened.	With dam removal and KBRA implementation, and implementation of the TMDLs, water quality will improve in the estuary. It is anticipated that habitat restoration efforts under KBRA and water quality improvements could directly contribute to recovery of any remnant eulachon populations in the estuary.
Green Sturgeon- in the lower 67 miles of the Klamath River	Green sturgeon is designated as a Species of Concern by NOAA Fisheries Service. Their habitat has been affected by the dams' alteration of river temperature and flow regime.	Dam removal and KBRA implementation would return the Klamath River water temperatures and flow regime to a condition that more closely mimics historical patterns and would likely benefit green sturgeon populations.

5.2 WHAT WOULD DAM REMOVAL ENTAIL, WHAT MITIGATION MEASURES MAY BE NEEDED, AND WHAT WOULD THESE ACTIONS COST?

The TMT developed a detailed deconstruction plan, titled *Detailed Plan for Dam Removal – Klamath River* Dams (Reclamation 2011b). This plan integrated requirements in the KHSA for hydroelectric operations through 2019; considered the full range of flow conditions that could be encountered during dam removal; considered the unique features of each dam and each reservoir; and, considered reservoir drawdown rates that minimize bank slumping and address the need to minimize impacts on the ecosystem.

Reservoir drawdown and facilities removal was designed with the goals of minimizing impacts on fish species and protecting threatened coho salmon. These goals resulted in the formation of a plan that calls for drawdown of the three larger reservoirs in the winter of a single year (2020). The plan ensures that the majority of reservoir sediments are transported downstream in January through March 15 when coho salmon, along with several other native fish species, are not present in large numbers in the Klamath River mainstem. This time period also corresponds to higher river flows needed to erode and transport the fine-grained reservoir sediments to the Pacific Ocean.

The dam embankments and structures would be removed over the remainder of 2020, taking into account river hydrology and safety considerations. Primary among these factors is the removal of the Iron Gate Dam embankment starting in June 2020 when flows in the Klamath River significantly decrease providing additional protection against the risk of the dam overtopping during its deconstruction.

With dam removal, and the associated drawdown of the reservoir, the reservoir bottoms would be exposed. The DRE would undertake revegetation efforts with the goal of establishing sustainable riparian, wetland, and upland habitats on the newly exposed reservoir bottoms as early as feasible after reservoir drawdown (spring time) and again in the fall. Hydroseeding would be employed with a mixture of native grasses; riparian and wetland plantings would also be established.

The TMT also evaluated partial removal of the Four Facilities to achieve a free flowing river. Partial facilities removal would remove most if not all portions of the Four Facilities while some other portions of the Four Facilities (e.g. pipelines, penstocks, and powerhouses) would remain in place. Leaving a portion of the Four Facilities in place would result in the same aquatic effects (short-term and long-term) as full facility removal but would require long-term maintenance (primarily to limit public access for safety) in exchange for reduced construction and mitigation costs.

The removal of Iron Gate Dam would compromise the existing water supply pipeline to the City of Yreka. Under terms of the KHSA, the DRE would modify the pipeline to allow continued water supply service to the City of Yreka. Preliminary designs for an elevated pipeline and steel pipeline bridge, as well as

modifications to the water supply intake at Fall Creek, were prepared in order to estimate costs. If dam removal proceeds, final designs for the Yreka pipeline would be prepared in consultation with the City of Yreka.

5.2.1 Mitigation Measures

Several mitigation measures were identified to help reduce the effects of dam removal as listed in Table 5-3. Additional mitigation actions may be identified at a later date in a "Definite Plan" for dam removal if there is an Affirmative Secretarial Determination. Moreover, a Record of Decision (ROD) on removal of the Four Facilities could include additional mitigation actions. Additional mitigation actions would likely increase the estimated cost of dam removal.

Table 5-3: Dam Removal Mitigation Measures

Mitigation Measure	Action of the DRE
Aquatic Species Relocation	Capture out-migrating juvenile salmonids and Pacific lamprey from several tributaries and release them at locations to avoid the effects of high SSCs. Mussels in the Hydroelectric Reach and in the lower Klamath River downstream of Iron Gate Dam would be relocated to tributary streams or upstream of J.C. Boyle Reservoir.
Protection of Downstream Water Intakes	Modify any intake and pump sites in the lower Klamath River to reduce the temporary effects of high suspended sediment from dam removal.
Protection of Culturally Significant Sites	Protect cultural resource sites eligible for inclusion on the National Register of Historic Places and California Register through construction measures. Protect tribal artifacts or grave sites if encountered.
New or Modified Recreation Facilities	Identify new recreational facilities and river access points to replace facilities removed with the dams and reservoirs.
Bridge and Culvert Relocation	Replace or relocated the Jenny Creek Bridge (Iron Gate Reservoir) and some culvert crossings along Copco Road that could be compromised by reservoir removal.
Bat Habitat Replacement	Construct bat habitat near each dam site to replace bat habitat lost by removing the structures associated with the Four Facilities.
Replace or Deepen Groundwater Wells	Deepen or replace groundwater wells to restore production rates affected by groundwater level declines around Copco 1 and Iron Gate reservoirs.
Reservoir Bottom (Parcel B Land) Fencing	Install fencing around newly exposed reservoir bottoms to protect revegetation and restoration efforts.
Replace Lost Wetlands	Mitigate or replace wetlands, estimated at less than 20 total acres.
Changes in the 100-year	Work with willing land owners to flood proof, relocate, or protect against the increase in flood
Floodplain Downstream of Iron Gate Dam (River Miles 190-172)	risk at affected structures (estimated to be less than six residences).
Flood Warning System	Inform FEMA of a planned major hydraulic change to the Klamath River that could affect the 100-year floodplain. Inform the National Weather Service's River Forecast Center of the potential change in the system so they could develop new flood-routing models for their floodwarning system.

5.2.2 Estimated Dam Removal Costs

Table 5-4 presents a summary of the total costs for the full facilities removal scenario including mitigation measures. The most probable cost is estimated at \$291.6 million (2020 dollars). The partial facilities removal scenario was estimated to be \$234.6 million, with an additional life cycle cost (annual maintenance through 2061) of \$12.4 million (2020 dollars) (See Table 5-5).

A Monte Carlo-based simulation process was used to determine the one percent probability minimum and maximum cost ranges shown in Tables 5-4 and 5-5. The Monte Carlo-based simulation is a problem-solving technique used to approximate the probability of certain outcomes by running multiple trials using random variable simulations. It is based on a computerized mathematical technique that accounts for risk in quantitative analysis and decision-making.

Table 5-4: Summary of Costs for Full Removal of all Four Facilities (2020 dollars)

	Forecas	t Range	
	Minimum (Less than a 1% Chance the Actual Cost will be Below this Estimate)	Maximum (Less than a 1% Chance the Actual Cost will be Above this Estimate)	Most Probable ¹
Dam Facilities Removal			76,618,994
Reservoir Restoration			21,728,000
Recreational Facilities Removal			797,305
Yreka Water Supply Modifications			1,765,910
Mobilization and Contingencies ²			50,728,393
Escalation to January 2020			36,461,398
Subtotal (Field Costs)	157,600,000	301,200,000	188,100,000
Engineering (20%) ³			37,600,000
Mitigation (35%) ⁴			65,900,000
Total Construction Cost	238,000,000	493,100,000	291,600,000

The most probable costs were used in the economic analysis.

Table 5-5: Summary of Costs for Partial Removal of all Four Facilities (2020 dollars)

	Forecast Range		
	Minimum (Less than a 1% Chance the Actual Cost will be Below this Estimate)	Maximum (Less than a 1% Chance the Actual Cost will be Above this Estimate)	Most Probable ¹
Dam Facilities Removal			52,096,172
Reservoir Restoration			21,728,000
Recreational Facilities Removal			797,305
Yreka Water Supply Modifications			1,765,910
Mobilization and Contingencies ²			38,830,385
Escalation to January 2020			27,582,228
Subtotal (Field Costs)	116,600,000	230,200,000	142,800,000
Engineering (20%) ³			28,400,000
Mitigation (45%) ⁴			63,400,000
Total Construction Cost	185,100,000	403,600,000	234,600,000
Total Life Cycle Cost ⁵	9,000,000	26,800,000	12,350,000

¹ The most probable costs were used in the economic analysis.

Mobilization and contingencies includes the mobilization of construction equipment to the dam site, design and construction contingencies.

Engineering costs include design data, engineering designs, permitting, procurement, construction management, and closeout activities.

Mitigation includes environmental mitigation, monitoring, and cultural resources protection or preservation.

Mobilization and contingencies includes the mobilization of construction equipment to the dam site, design and construction contingencies.

Engineering costs include design data, engineering designs, permitting, procurement, construction management, and closeout activities.

Mitigation includes environmental mitigation, monitoring, and cultural resources protection or preservation.

Life cycle costs are the long-term cost of ownership over a defined period of time (50 years).

The States of Oregon and California collectively agreed to fund dam removal at a cost of up to \$450 million (2020 dollars) as defined in the KHSA. PacifiCorp customers in Oregon and California would pay \$200 million of this amount via a surcharge. The most probable cost estimates for full and partial facilities removal fall beneath this cost cap. The maximum projected cost for full facilities removal would exceed the cost cap by \$43 million (total \$493 million) (2020 dollars).

5.3 WHAT ARE THE MAJOR POTENTIAL RISKS AND UNCERTAINTITIES ASSOCIATED WITH DAM REMOVAL?

Large dam removals involve inherent risks and uncertainties. Through the Detailed Plan and other studies, the TMT has identified four primary risks that could result in changes to the expected effects of dam removal or anticipated construction activities. Other project uncertainties, as described elsewhere in this report, have been successfully quantified or studied to an extent that they are no longer categorized as risks. The four remaining dam removal risks are summarized below along with measures or plans to reduce the risk and uncertainty.

5.3.1 Effects to Aquatic Species and Fisheries from Extended Downstream Sediment Transport

Downstream sediment transport could result in risks to aquatic resources beyond those already anticipated (See Section 5.1) if mitigation, engineering and/or technical difficulties during dam removal extend the reservoir drawdown period. If the planned timeline for reservoir drawdown (January 1 through February 1) is not achieved, aquatic species would be exposed to high suspended sediment concentrations (SSCs) potentially extending into critical fish migratory periods. Extended exposure to SSCs could negatively affect fish in consecutive year classes and could have corresponding effects on commercial, tribal, and recreational fisheries.

Due to the uncertainty regarding the length of time over which high SSCs would occur if a problem arose during dam removal, the exact effects on aquatic resources and on basin fisheries is not known. To reduce this uncertainty, the Definite Plan for dam removal (to be developed in the case of an Affirmative Secretarial Determination) would place an emphasis on provisions, planning, and extensive preparation to ensure high SSCs associated with reservoir drawdown would not extend past March 15. Aquatic species relocation mitigation measures (briefly described in Table 5.2) could be expanded or lengthened to remove fish from effects of high SSCs if they extend beyond March 15.

5.3.2 Cost Exceedence to a Federal DRE

The large and complex construction activities associated with removal of the Four Facilities have the potential to include unexpected changes or unforeseen events, which could result in project costs greater than those originally

estimated. Also, project challenges could impede the dam removal process or extend the project timeline, and could result in the accrual of additional project costs.

Risk to a Federal DRE would occur during facilities removal if the DRE anticipated exceeding the state cost cap for dam removal but was unable to stop a portion of facilities removal due to safety considerations. Under these conditions, the Federal DRE could be incurring dam-removal expenses without a known source of funding. As stated in the KHSA, the Federal government is not responsible for any dam removal costs. To reduce this potential risk, the DRE construction management team would utilize construction cost forecasting continuously during facilities removal to determine early whether cost overruns were likely and to give the Parties to the KHSA time to address funding issues in a timely manner.

5.3.3 Short-term Flooding

Flooding risks during dam removal are associated with initial reservoir drawdown and dam excavation at either Iron Gate or J.C. Boyle dams stemming from (1) an overly rapid drawdown rate resulting in embankment instability and failure, or slumping of the exposed dam face; or (2) the possibility of flows from a large event exceeding the available water bypass capacity and overtopping the earthen dam embankment during dam removal.

To address this risk, the *Detailed Plan for Dam Removal - Klamath River Dams* specifies that the embankment sections at Iron Gate and J.C. Boyle dams be removed beginning June 1, 2020, with the full removal completed by September 15, 2020. This period corresponds to the lowest river flows and would allow for the construction of coffer diversion dams to route flows around the earthen embankments greatly reducing the risk of overtopping. The *Detailed Plan for Dam Removal- Klamath River Dams* also specifies the maximum reservoir drawdown rates to reduce the chance of embankment failure.

5.3.4 Cultural and Historic Resources

Dam removal and reservoir drawdown could affect five sites reported to be submerged in the reservoirs, as well as other unknown sites that may be submerged in the reservoirs, and any human remains associated with these sites. Culturally sensitive sites, artifacts, or human remains could be exposed when the reservoirs are drained as a result of (1) the river cutting a new channel, (2) decades of wind and wave action along the reservoirs' shores that caused localized scour, or (3) slumping of reservoir banks. Once exposed, these sites would need to be documented and protected from vandalism or looting. In addition, applicable Federal and state laws regarding cultural resources, historic preservation, and burials would be followed.

While every precaution would be taken to avoid disruption of these resources, in the case that they are discovered during dam removal and other construction activities, they pose a risk. Encountering traditional cultural properties or other culturally sensitive resources could extend the timeline of construction activities and affect the cost of dam removal.

5.4 IS FACILITIES REMOVAL IN THE PUBLIC INTEREST, WHICH INCLUDES, BUT IS NOT LIMITED TO, CONSIDERATION OF POTENTIAL IMPACTS ON AFFECTED LOCAL COMMUNITIES AND TRIBES?

Dam removal and KBRA implementation would provide substantial social and economic benefits to the Klamath Basin. However, dam removal would also alter or change the availability or quality of some resources and would negatively affect specific recreational resources, jobs, and real estate values closely associated with the dams and reservoirs. Provided below is a summary of the potential effects of dam removal and KBRA implementation on national, regional, tribal, and local communities, including economic and non-economic effects.

5.4.1 Summary of Effects to National Economic Development (NED)

A National Economic Development (NED) analysis evaluates the net economic benefits of the dams removal with implementation of the programs in KBRA. The period of analysis is 50 years, beginning in year 2012 with the first KBRA activity, and continuing through 2061. All benefits and costs were discounted back to year 2012 using the 2011 Federal water resources planning rate of 4.125 percent.

Economic benefits were quantified for the following categories.

- Commercial fishing The Four Facilities affect stocks of SONCC coho salmon ESU and Klamath River fall- and spring-run Chinook salmon. Under dam removal, coho retention would likely continue to be prohibited in the California and Oregon troll fisheries south of Cape Falcon. Troll harvest of Klamath Chinook salmon is expected to increase by an average 43 percent (2012 to 2061 time period)¹ with dam removal. Annual net revenue associated with total Chinook salmon harvest (all stocks) would increase under dam removal. The difference in annual net revenue between the dams remain and dam removal scenarios would be an increase of \$7.296 million (2012 dollars) or a total of \$134.5 million for the 50-year period of analysis.
- In-river sport fishing The Four Facilities affect stocks for in-river recreational fisheries, including salmon, steelhead and redband trout, and the recreational sucker fishery, which has been closed since 1987. Dam removal would result in increased fish harvests, which would increase net economic values of in-river sport fishing. In-river recreational harvest of

These values include on average the improvement to the fisheries that would occur from 2012 to 2020 prior to dam removal with the implementation of the KBRA measures. These averages would have been larger, as reflected in Section 5.1, if only the 42 year period following dam removal was used. Klamath Chinook salmon is expected to increase by 8 percent (2012 to 2061 time period)¹. The resulting average annual net economic value would increase \$126,000 per year (2012 dollars). The incremental river sport fishery benefits for dam removal equates to a discounted present value of \$1.75 million (2012 dollars) for the 50-year period of analysis. The prospects for restoration of the recreational sucker fishery appear limited for either a dams remain or dam removal scenario. The in-river sport fishing economic value does not include likely increases in steelhead and redband/rainbow trout fisheries, which was not quantified.

- Ocean sport fishing The ocean recreational harvest of Klamath Chinook salmon is expected to increase by 43 percent (2012 to 2061 time period) ¹ under dam removal. Increased Klamath Chinook salmon availability would result in increased annual net economic values related to ocean sport fishing. Existing regulations for the recreational coho salmon fishery in California and Oregon are expected to continue in the future under both the dams remain or dam removal scenarios. The average annual increase in net economic value (for all areas combined) under a Dams Out scenario is \$2.865 million (2012 dollars). The incremental ocean sport fishery benefits for dam removal equates to a discounted present value of \$52.9 million (2012 dollars) for the 50-year period of analysis.
- Irrigated agriculture Increased water supplies during dry and drought years under the dam removal and KBRA implementation would increase gross farm revenues from irrigated agriculture, which would result in economic benefits in about one out of every 10 years. The difference in net revenue between the dams remain or dam removal scenarios would be an increase of \$29.89 million (2012 dollars) over the 50-year period of analysis.
- Refuge recreation Dam removal and KBRA implementation would likely increase waterfowl abundance at refuges and hunting trips to the refuges. Increased hunting trips would result in increased economic value related to waterfowl hunting activities. The difference in net revenue between the dams remain or dam removal scenarios would be an increase of \$4.3 million (2012 dollars) over the 50-year period of analysis.
- Nonuse values Nonuse values were estimated using a stated preference (SP) survey. The survey collected information from households in three strata: the 12-county Klamath area; the rest of Oregon and California; and the rest of the nation. Through their stated willingness to pay for specific scenarios for ecosystem restoration within the Klamath Basin, survey respondents indicated they placed significant value on the KBRA, KHSA, and restoration of Klamath Basin resources. Overall, the study results indicated that the majority of respondents in the Klamath 12-county area, in the two states, and throughout the rest of the nation, are concerned about declines of Chinook salmon and steelhead trout that return to the Klamath River and the extinction of fish species in the Klamath Basin; and, they agree that restoration should be guided by an action plan that includes Klamath dam removal, water sharing agreements, and basin restoration. Using a conservative methodology for determining the nonuse value associated with Klamath dam removal and restoration of Klamath Basin resources, the survey identified \$15.6 billion in nonuse benefits.

Table 5-6, below, summarizes estimated economic benefits for the above categories. Some economic benefits, including in-river steelhead fishing, redband trout fishing, and refuge wildlife viewing could not be readily quantified and monetized because sufficient data for an analysis was not available. Improved Klamath Basin fisheries would also provide benefits that cannot be quantified to tribes because of the expansive and integral value of fish to tribal members and tribal culture. Given the positive effects of dam removal on fishery resources and refuge recreation, it is expected that tribal benefits associated with these categories would also be positive. The NED analysis compares economic benefits and costs of the dam removal with KBRA Implementation scenario with dams remain without the KBRA (see Table 5-6). Costs include construction costs related to dam removal, site mitigation, and KBRA implementation. In addition to costs incurred from dam removal, there would be some costs savings related to lowered operation, maintenance and replacement (OM&R) costs of the Four Facilities following dam removal.

Table 5-6: Total Net Benefits and Costs Summary for Dam Removal and Implementation of the KBRA

Benefit and Foregone Benefit Categories	Period of Analysis (2012-2061) Discounted Value – Difference between Dams Out and Dams In (\$ millions; 2012 dollars)
Commercial Fishing (Klamath Chinook Salmon Harvest)	134.5
In-River Sport Fishing (Chinook Salmon Fishery)	1.8
Ocean Sport Fishing	52.8
Irrigated Agriculture	29.9
Refuge Recreation	4.3
Hydropower (foregone)	-1,320.1
Whitewater Boating (foregone)	-6.1
Reservoir Recreation (foregone)	-35.4
Nonuse Values ¹	
12-county Klamath Area in OR and CA	
Total Nonuse Value	67.0
Total Economic Value	217.0
Rest of OR and CA	
Total Nonuse Value	2,091.0
Total Economic Value	9,071.0
Rest of the U.S.	
Total Nonuse Value	13,487.0
Total Economic Value	74,983.0
Unquantified Benefits	
Tribal Commercial Fisheries	Insufficient data to quantify benefits.
Tribal Cultural Values (including ceremonial and subsistence uses)	Applying a traditional economic framework is not appropriate.
In-river Steelhead and Redband trout Sport Fishing	Insufficient data to quantify benefits
Refuge Wildlife Viewing	Insufficient data to quantify benefits
Cost Categories	Period of Analysis (2012-2061) Discounted Value –
(Total Quantified Costs)	Difference between Dams Out and Dams In
,	(\$ millions; 2012 dollars)
KBRA Restoration	474.1
Facility Removal	129.1
Site Mitigation	37.7
OM&R (cost savings)	-188.9
Unquantified Costs	
Real Estate Values	Insufficient data to quantify costs
Hydropower Ancillary Services	Explicit consideration of ancillary services was outside the scope
, ,	of this analysis.
Regional Powerplant Emissions	The hydropower analysis described in this document does not
	fully consider the effect, if any, of changing hydropower
	production levels on system-wide powerplant emissions or
	regional air quality.

Dam removal would also result in some foregone benefits which occur when the dam removal scenario provides fewer benefits than the dams remain scenario. Foregone benefits occur in the following categories:

- Hydropower The Four Facilities would generate an average of 895,847megawatt hours of electricity annually over the period 2012-2061 if the existing dams were left in place and planned efficiency upgrades were completed. Under the dams out scenario, the Four Facilities would operate normally during 2012–2019 (8 years). After this time period, the production of electrical energy and capacity at the Four Facilities would be zero from January 1, 2020 through the end of 2061 (42-years). Under a Dams Out scenario, the estimated mean present value of hydropower economic benefits was approximately \$289.2 million (2012 dollars), over the 50-year period of analysis. Relative to the dams remain scenario, this represents a mean reduction in economic benefits of approximately \$1.32 billion (2012 dollars).
- Whitewater boating With dam removal, whitewater boating activity on the upper Klamath River would decrease beginning in 2020 because of the dependence of water releases from the J.C. Boyle Dam to provide sufficient and predictable flows, primarily for whitewater boating in the heavily used Hell's Corner Reach. The average number of days with acceptable flows for whitewater boating on the Hell's Corner Reach would decline by 47 percent during the five month period from May through September. The total discounted loss in economic value associated with whitewater boating recreation with Dams Out is estimated at \$6.1 million for the 50-year period of analysis.
- Reservoir recreation With dam removal, the use of reservoirs for flatwater boating, fishing and other uses would be lost. The Dams Out scenario results in a loss of 2.03 million total recreation days. The total discounted loss in economic value associated reservoir recreation is \$35.4 million for the 50-year period of analysis.

The NED benefit cost analysis (BCA) indicates that the net economic benefits of Dam Removal and Implementation of the KBRA are strongly positive. For both partial and full facilities removal the NED BCA ranges from approximately nine to one to forty-eight to one (See Table 5-7). This implies that the Dam Removal and Implementation of the KBRA (including the partial facilities removal option) is justified from an economic perspective. Table 5-7 summarizes NED benefits and costs.

Table 5-7: Benefit Cost Analysis Summary for Dam Removal and Implementation of the KBRA¹

	Со	sts	Ben	efits	Net Economic Benefits		Benefit/Cost Ratio	
	Low	High	Low	High	Low	High	Low ²	High ²
Full Facilities Removal	1,772.1	1,813.6	15,868.3	84,435.4	14,054.7	82,663.3	8.7 to 1	47.6 to 1
Partial Facilities Removal	1,746.4	1,787.9	15,868.3	84,435.4	14,080.4	82,689.0	8.9 to 1	48.3 to 1

¹ The costs and benefits presented here represent quantifiable costs and benefits; there are also unquantifiable costs and benefits (as shown in Table 5-6) that are not possible to include in the calculation of total costs and benefits. The most probable dam removal costs as shown in Tables 5-4 and 5-5 were used in the economic analysis.

5.4.2 Summary of Effects to Regional Economics (RED)

Dam removal actions have short-term and long-term positive and negative effects on jobs in the regional economy. Construction activities associated with dam removal, mitigation actions, and implementation of KBRA programs would add jobs, labor income, and economic output to the region in the short-term (2012 -2026). For example, jobs associated with KBRA implementation spending would span 15 years, jobs associated with dam removal would likely span just a single year, and jobs associated with mitigation measures would span about 8 years. Over the longer term, dam removal and KBRA programs would result in the addition of jobs in the region related to irrigated agriculture, commercial fishing, in-river sport fishing, ocean sport-fishing, and refuge recreation. Added jobs in these areas would increase regional labor income and economic output; producing a long-term positive effect on regional economic development.

Dam removal would eliminate long-term jobs related to annual operation and maintenance (O&M) expenditures associated with the Four Facilities. In addition, changes to whitewater boating opportunities and loss of open-water and flat-water recreation activities at the Klamath Hydroelectric Project reservoirs would also result in lost regional jobs.

Implementation of the KHSA and KBRA would add regional short-term and long-term jobs and would increase labor income and regional economic output. Added jobs include full time, part time, and temporary positions. Table 5-8 summarizes the changes in jobs, labor income, and regional output for the specific region modeled (color coding is used to differentiate the regions) and the timeframe of the jobs. This regional economic analysis compares two scenarios: dam removal and implementation of the KBRA, and leaving the dams in place without implementation of the KBRA. Jobs, labor income, and regional output were generated using IMPLAN, which estimates regional impacts based on the makeup of the economy at the time of the underlying IMPLAN data (2009). It is important to note that regional impacts were analyzed by scenario specific definitions, periods of occurrence, and other factors; therefore, the potential impacts (such as jobs) should not be summed across a category or region.

Low estimate (Low Benefit Estimate divided by High Cost Estimate: these estimates are based on nonuse value including recreation use benefits and forgone recreation use values). High estimate (High Benefit Estimate divided by Low Cost Estimate: these estimates are based on total economic value adjusted by removing recreation use benefits and forgone recreation use values).

The largest decrease in annual average jobs (estimated at 49) and average annual regional output (- \$5 million) associated with dam removal would occur because of reduced spending on Operation and Maintenance of the Four Facilities between 2020 and 2061 (Table 5-8). The largest increases in jobs and regional output would be associated with dam decommissioning, implementation of mitigation actions associated with dam decommissioning, implementing the KBRA programs, and the resultant improvements in agricultural (during drought years) and commercial fishing. decommissioning would result in an estimated 1,400 regional jobs and a regional output of \$163 million; these would occur during the single year of dam decommissioning in 2020. Implementing mitigation measures would result in an estimated 217 short-term jobs and regional output of \$30.86 million between 2018 and 2025; annual jobs and annual regional output would vary year by year proportionate to actual regional spending. Implementation of KBRA programs would result in about 300 annual jobs (4,600 jobs over 15 years) and \$29.6 million in average annual regional output from 2012 through 2026. Jobs and regional output estimates would also vary year by year proportionate to actual KBRA regional spending. Through the KBRA Water Program, agriculture would not decrease as markedly during drought years (which occur about once every 10 years) and would result in an estimated 70 to 695 more jobs (depending on the severity of the drought) than would occur without KBRA. The corresponding range of the estimated increase in regional output would be \$9 to \$84 million. Implementation of the two agreements would improve commercial fishing in five management areas along the Oregon and California coastlines. The three largest average annual increases would be in the San Francisco Management Area (219 jobs and \$6.6 million), Central Oregon Management Area (136 jobs and \$4.07 million), and Fort Bragg Management Area (69 jobs and \$2.41 million) (Table 5-8).

5.4.3 Tribal

Dam removal and implementation of the KBRA would help protect tribal trust resources and address various social, economic, cultural, and health problems identified by the six Federally recognized Klamath Basin tribes (Klamath, Karuk, Yurok, Resighini Rancheria, Quartz Valley, and Hoopa Valley) (See Table 5-9). Dam removal would have beneficial effects on water quality, fisheries, terrestrial resources, and traditional cultural practices. Primary among these are greater anadromous fish harvests for some tribes in the lower basin, a return of salmon and steelhead to the upper basin for the Klamath Tribes, and a restoration of Klamath Tribes sucker fisheries. In addition, dam removal would enhance downstream water quality and the ability of Indian tribes in the Klamath Basin to conduct traditional ceremonies and other traditional practices. Implementation of the KBRA would provide funds to the signatory tribes (Klamath, Yurok, and Karuk) for restoration and monitoring projects that would create jobs for tribal members.

Table 5-8: Average Annual Change in Jobs (Full Time, Part Time, or Temporary), Labor income, and Output for Dam Removal and KBRA Implementation (by Region, Activity, and Timeframe)¹

	,				
Economic Region	Activities under Dams Out with KBRA Scenario	Regional Full Time, Part Time or Temporary Jobs - Dams Out with KBRA Scenario (Incremental Change in Jobs from Dams In Scenario)	Regional Labor Income (Incremental Change in Million \$; 2012 dollars)	Regional Output (Incremental Change in Million \$; 2012 dollars)	Timeframe ²
Klamath County OR; Siskiyou County CA	Dam Decommissioning	1,400³	09	163	2020
Klamath County OR; Siskiyou County CA	O&M	-49	-2.05	ī.	2021 – 2061
Klamath County OR; Siskiyou County CA	Mitigation	217^4 (total jobs 2018 to 2025)	10.01	30.86	2018 – 2025
San Francisco Management Area (San Mateo, San Francisco, Marin and Sonoma Counties CA)	Commercial Fishing	218	2.56	9.9	2012 – 2061
Fort Bragg Management Area (Mendocino County CA)	Commercial Fishing	69	1.05	2.41	2012 – 2061
KMZ-CA (Humboldt and Del Norte Counties CA)	Commercial Fishing	19	0.07	0.19	2012 – 2061
KMZ-OR (Curry County OR)	Commercial Fishing	11	90:0	0.13	2012 - 2061
Central Oregon Management Area (Coos, Douglas and Lane Counties OR)	Commercial Fishing	136	1.74	4.07	2012 – 2061
Klamath County OR; Siskiyou County CA	Reservoir Recreation	-4	-0.13	-0.31	2021 – 2061
Klamath County OR; Del Norte, Humboldt, and Siskiyou Counties CA	In River Sport Salmon Fishing	æ	0.07	0.15	2012 – 2061
KMZ-CA (Humboldt and Del Norte Counties CA)	Ocean Sport Fishing	5.5	0.18	0.48	2012 – 2061
KMZ-OR (Curry County OR)	Ocean Sport Fishing	1.2	0.02	0.09	2012 - 2061
Klamath and Jackson counties OR; Humboldt and Siskiyou counties CA	Whitewater Boating	-14	-0.43	-0.89	2021 – 2061

Table 5-8: Average Annual Change in Jobs (Full Time, Part Time, or Temporary), Labor income, and Output for Dam Removal and KBRA Implementation (by Region, Activity, and Timeframe)¹

Economic Region	Direct KBRA Activities	Regional Full Time, Part Time or Temporary Jobs - Dams Out with KBRA Scenario (Incremental Change in Jobs from Dams In Scenario)	Regional Labor Income (Incremental Change in Million \$; 2012 dollars)	Regional Output (Incremental Change in Million \$; 2012 dollars)	Timeframe ³
Klamath County OR; Siskiyou and Modoc Counties CA	Irrigated Agriculture ⁵	2027: 112 2043: 695 2045: 397 2051: 187 2059: 70	2027: 2 2043: 11 2045: 7 2051: 4 2059: 2	2027: 13 2043: 84 2045: 41 2051: 20 2059: 9	2027, 2043, 2045, 2051, 2059
Klamath County OR; Siskiyou County CA	Refuge Recreation	5	0.12	0.27	2012 – 2061
Klamath County OR; Siskiyou, Modoc, Humboldt, and Del Norte Counties CA	KBRA Fisheries Program	261	12.4	25	2012 – 2026
Klamath County OR; Siskiyou, Modoc, Humboldt, and Del Norte Counties CA	KBRA Water Resources Program	16	0.7	1.6	2012 – 2026
Klamath County OR; Siskiyou, Modoc, Humboldt, and Del Norte Counties CA	KBRA Regulatory Assurances	10	0.5	₽	2012 – 2026
Klamath County OR; Siskiyou County CA	KBRA County Programs	Klamath County: \$3.2 million would increase jobs, labor income and output. Siskiyou County: \$20 million would increase jobs, labor income and output.	ı	ı	
Klamath County OR; Siskiyou, Modoc, Humboldt, and Del Norte Counties CA	KBRA Tribal Programs	Slamath County OR; Siskiyou, KBRA Tribal Klamath: 8 Klamath: 0.35 Modoc, Humboldt, and Del Programs Yurok: 10 Yurok: 10	Karuk: 0.35 Klamath: 0.39 Yurok: 0.45	Karuk: 0.55 Klamath: 0.64 Yurok: 0.81	2012 – 2026

accumulate in each year of the study period. Jobs for the Direct KBRA Activities were average over the 15 year timeframe and could be higher or It is not appropriate to add jobs across years, as the job estimates provided represent average annual changes rather than annual changes that lower in any year.

decommissioning is estimated to have an employment impact of 1,400 jobs. These jobs would start on January 1, 2020 and persist until December ² These employment impacts are anticipated to occur on the first day of the timeframe identified and persist over the period. For example, dam 31, 2020. Similarly, the loss of 49 operation and maintenance jobs would be anticipated to start on January 1, 2020.

 $^{^{\}rm 3}$ Jobs created during dam removal would occur for one year in 2020.

dobs reported related to mitigation spending are reported as a total over the mitigation period of 2018-2025.

⁵ Regional economic impacts stemming from irrigated agriculture were estimated to be equal in all years except for the years in the hydrologic model that correspond with the drought years of 1975, 1992, 1994, 2001, and 2008. The values presented are annual totals for the modeled drought years.

Klamath County OR; Siskiyou County CA
San Francisco Management Area
Fort Bragg Management Area
KMZ-CA
KMZ-OR
Central Oregon Management Area
Klamath County OR; Del Norte, Humboldt, and Siskiyou Counties CA
Klamath and Jackson counties CA
Klamath County OR; Siskiyou and Modoc
Counties CA
Klamath County OR; Siskiyou, Modoc,
Humboldt, and Del Norte Counties CA

Table 5-9: Common Benefits to all Indian Tribes with Dam Removal and Implementation of the KBRA

Major Water and Aquatic Resource Benefits of Dam Removal and KBRA Implementation					
	Water Resources				
Hydrology	More natural river hydrology. Natural flushing flows would benefit aquatic species and riparian vegetation.				
Water Quality	Natural temperature regime and improved water quality would benefit aquatic life.				
Toxic Blue Green Algae	Free flowing river segments would deter conditions that lead to toxic algal blooms and reduce human health concerns.				
Aesthetics	Improvements in water quality would improve aesthetics and ceremonial opportunities that require a healthy river.				
	Aquatic Resources				
Traditional Lifestyle	Greater fisheries abundance would bolster opportunities for transmitting traditional knowledge to successive generations, including the important practice of giving fish to elders. Improved social cohesion and function among Indian populations through strengthened sense of tribal identity.				
Cultural and Religious Practices	Improved fish abundance would facilitate the tribes' ability to reinstate and continue to practice ceremonies in their historic, complete forms at the appropriate times of the year, thereby improving tribal identity.				
Standard of Living	Increased fish abundance would contribute to greater food supply and food security for the Indian population, enhancing standard of living.				
Health	Greater opportunity for healthy food consumption associated with increased subsistence fishing opportunities, which would improve overall health conditions.				

5.4.4 Previous PacifiCorp Analyses of Relicensing versus Removal of the Four Facilities and Public Utility Commission Rulings

A prerequisite to the \$200 million (2020 dollars) customer surcharges necessary for KHSA implementation was concurrence from the California Public Utility Commission (CPUC) and the Oregon Public Utility Commission (OPUC) with PacifiCorp's analysis that implementing the KHSA would be in the best interest of their customers and that the incremental increases were fair and reasonable. PacifiCorp's records and testimony before both commissions compared two scenarios: (1) customers' cost and risks under the KHSA dam removal, and (2) customers' cost and risks from relicensing the Four Facilities. (It is important to note that the TMT did not evaluate the potential costs or risks to PacifiCorp customers for relicensing the dams.)

PacifiCorp reported that relicensing would require implementing new mandatory flow conditions for the project (decreasing power generation by 20 percent and reducing peaking-power opportunities), constructing and operating fish passage at the dams, and addressing water-quality issues in and below the reservoirs. PacifiCorp estimated these actions would cost in excess of \$460 million (2010 dollars) in capital and operating expenses. PacifiCorp also reported that these costs are uncertain and uncapped and relicensing represents a substantial financial risk to its customers. For example, if fish passage measures at the Four Facilities proved unsuccessful, upgraded facilities, altered operations, and/or dam decommissioning may be required. These additional uncapped expenses would likely be borne by PacifiCorp customers.

In PacifiCorp's analysis of the financial impacts of dam removal, they assumed that customer costs associated with dam removal would be capped at \$172 million in 2010 dollars (or \$200 million in 2020 dollars). Implementing Interim Measures (as defined in KHSA Appendix C and D) would cost about \$79 million (2010 dollars); these costs would be largely capped and would carry only a small financial risk for its customers. In addition, PacifiCorp customers would also have to pay for replacement power after removal of the Four Facilities in 2020.

Table 5-10 provides a summary of PacifiCorp's analysis of the above two scenarios in terms of operational changes, costs, risks, and liabilities to their customers. PacifiCorp's analysis submitted to the CPUC and OPUC demonstrated that the KHSA resulted in less cost and less risk for its customers as compared to FERC relicensing, even with the inclusion of costs associated with replacement power. The CPUC concluded that if "the KHSA surcharge is not instituted....ratepayers would be exposed to an uncertain amount of costs" associated with relicensing. The OPUC concluded that the KHSA "mitigates the risks associated with decommissioning and removal of the [four] facilities for PacifiCorp, and is therefore the least risky alternative for customers compared to relicensing" (OPUC 2011). Based on PacifiCorp's analysis and testimony, both PUCs agreed with this analysis and approved collection of the customer surcharges necessary to fund the removal of the Four Facilities in 2020, as described in KHSA.

Table 5-10: Operations, Costs, Risks, and Liabilities for FERC Relicensing and Removal of the Four Facilities, Based on PacifiCorp Analyses

PacifiCorp's Future Hydroelectric Project Scenario	Operations at the Four Facilities	Operations, Risks, and Liabilities PacifiCorp's estimated customer costs	PacifiCorp customer risks and liabilities
FERC Relicensing	Four Facilities continue to operate, but mandatory conditions would require construction and operation of fish passage facilities (screens and ladders), 20 percent loss of hydropower. Substantial loss of power peaking at J.C. Boyle, and requirements to remedy water temperature quality issues below Iron Gate Dam.	In excess of \$400 million in capital costs; in excess of \$60 million in O&M over a 40-year license term.	Uncapped financial liability. Costs could exceed \$460 million, particularly if fish passage proves ineffective or if water quality does not meet OR or CA state standards. FERC could require PacifiCorp to decommission the facilities if it's unable to issue a new license with costs borne by PacifiCorp customers.
KHSA Removal of the Four Facilities	Continue operation under annual FERC licenses through 2019. Power generation would cease in January 2020 with transfer of the Four Facilities to a DRE. Interim Measures (Appendix C and D of KHSA) would be implemented between 2012 and 2020 to enhance flow variability, water quality, fish habitat/health, and fund specified research and monitoring.	\$172 million for dam removal (\$200 million in 2020 dollars). Funds would be collected with a 9-year, 2 percent (or less) surcharge on OR and CA customers. Customers would be responsible for KHSA Interim Measures at \$9 million in capital costs and \$70 million in O&M and the costs for replacement power.	Customer financial liability for dam removal is capped at \$172 million (\$200 million in 2020 dollars). Costs for Interim Measures are largely capped at \$79 million (2010 dollars).

Sources: Scott 2010 and KHSA 2010

5.4.5 Other Social and Environmental Effects from Dam Removal

In addition to the effects of dam removal on fisheries, national and regional economic development, tribal resources, and PacifiCorp's customers, there are several other important social and environmental resource considerations addressed in the Overview Report that will inform a determination on whether implementation of the KHSA and KBRA is in the public interest. Table 5-11 summarizes these additional resource considerations and the effects of dam removal and KBRA implementation on each.

Table 5-11: Summary of Other Social and Environmental Effects of Dam Removal and KBRA Implementation

Issue

Effect of Dam Removal/KBRA

Prehistoric and Historic Cultural Resources (Section 4.4.3):

Numerous Indian tribal and early settler development sites in the Klamath River Basin are potentially eligible for inclusion on the National Register of Historic Places. These sites are part of the cultural and historic heritage of the area. Specifically, the Klamath Hydroelectric Project dams and facilities are recommended for inclusion on the National Register.

Wild and Scenic River (Section 4.4.5):

The US Forest Service, BLM and the National Park Service are responsible for Klamath Wild and Scenic River (WSR) management and are required by the WSR Act to make a determination whether dam removal is consistent with its river-resource protection requirements on the two components of the Klamath WSR.

Removal of dams and associated hydroelectric facilities would permanently remove these resources from eligibility to the National Register. Additionally, dam removal could affect other sites. Consultations under Section 106 of the National Historic Preservation Act (NHPA) are being conducted and would continue, as appropriate, throughout planning and implementation if dam removal were to proceed in order to identify and protect these resources.

Federal projects such as the proposed removal of the Four Facilities are consistent with the WSRA's Section 7(a) protections when they do not "invade", or intrude within, the WSR boundary, nor "unreasonably diminish" its scenery, recreation, fish and wildlife values as they existed at the date of WSR designation.

The Oregon component of the WSR below J.C. Boyle Powerhouse would experience a loss in whitewater boating opportunities as a direct result of dam removal. Overall, dam removal would improve scenery, recreation, and fish and wildlife values associated with the Oregon and California components of the Klamath WSR.

Recreation (Section 4.4.6):

The Four Facilities' reservoirs (excluding Copco 2) provide recreational opportunities including whitewater boating below J.C. Boyle powerhouse, power boating, waterskiing, lake swimming, flat-water boat angling, sightseeing, camping, and wildlife viewing.

The removal of the Four Facilities would result in a change to recreation opportunities. Open water recreation and camping at J.C. Boyle, Copco 1, and Iron Gate reservoirs would be permanently lost following dam removal. These losses could be partially replaced by other regional recreation resources. Whitewater boating would be reduced in the popular Hell's Corner Reach. Flat-water fishing opportunities would be lost at the reservoirs, while habitat improvements and dam removal would likely increase in-river fishing opportunities for salmon, steelhead and redband trout basin-wide.

Table 5-11: Summary of Other Social and Environmental Effects of Dam Removal and KBRA Implementation

Issue

Effect of Dam Removal/KBRA

Real Estate (Section 4.4.7):

Private development around Copco 1 and Iron Gate reservoirs occurred largely as a result of proximity to the reservoirs and their recreational/scenic values. Dam removal would change this important value attached to property values.

Existing lake recreational opportunities and scenic quality would change following dam removal and some property owners around Copco 1 and Iron Gate reservoirs would lose their reservoir views and reservoir access. Public access to the newly created river channel would be provided, and recreational opportunities would be available on and along the river.

Scenic, recreational, and accessibility changes following dam removal would decrease the value of privately-owned parcels around Iron Gate and Copco 1 reservoirs in the near term. This decrease in value could not be quantified; a supplemental analysis is underway to provide additional information on the potential effect of reservoir removal on these property values and will include evaluations with a date of value of 2004 and 2006

Dam removal has the potential to increase the value of property near and adjacent to the Klamath River downstream of Iron Gate Dam due to improved water quality and more robust runs of anadromous fish.

Refuges (Section 4.4.8):

The Lower Klamath National Wildlife Refuge does not have a water allocation and experiences water delivery uncertainty and shortages in the critical April through October time period, particularly in dry years, which reduces wildlife species diversity and abundance.

Dam removal and KBRA implementation would allow the refuges within Reclamation's Klamath Project to have greater certainty about water allocations and flexibility in water deliveries. Full refuge needs would likely be met in 88 percent of years. Historically, full refuge water needs in the April through October period have only been met in less than 10 percent of the years. Dam removal with KBRA implementation would also define and maintain the habitat benefits of "walking wetlands" and provide the refuges revenues from lease lands. Additional water deliveries with increased predictability, would improve bird numbers.

- Waterfowl carrying capacity of fall migrating ducks would increase by 147,000 to 336,000.
- Estimated additional wetland habitat for more than 8,000 additional nongame waterbirds (shorebirds, gulls, terns, cranes, rails, herons, grebes, egrets, and ibis) in an average water year, and 20,000 in drier years.
- Greater waterfowl numbers will provide a larger and more reliable food resource base for wintering bald eagles.

Chemicals in Reservoir Sediments (Section 4.4.9):

Reservoir sediments contain low levels of contaminants that needed to be evaluated to determine if they could be eroded and transported downstream without adverse impacts to humans or other biota. In addition, the impact of human exposure to sediments not eroded downstream needed to be evaluated.

Impounded sediments were generally found to contain low levels of contaminants and can be considered relatively clean. Contaminant levels do not preclude their downstream release during dam removal. A screening level evaluation found that long-term adverse effects in the downstream areas and new river channel are unlikely for humans and aquatic and terrestrial hiota

Algal Toxins (Section 4.4.10):

Large algal blooms occur in Copco 1 and Iron Gate reservoirs during the summer months and produce the algal toxin microcystin; these reservoirs have posted health advisories warning against recreational use (water contact), drinking, and fish consumption. These health advisories extend to the lower Klamath River and at times, into the Klamath Estuary.

Dam removal would eliminate large, seasonal blooms of nuisance toxic algae in Copco 1 and Iron Gate reservoirs and facilitate the use of the Klamath River for multiple human health related beneficial uses, including traditional Indian cultural practices, recreation, agriculture, shellfish harvesting, and commercial, tribal, and sport fishing.

Algal toxins in the Klamath River have impaired the ability of the Klamath, Resignini Rancheria, Karuk, Hoopa, Quartz Valley and Yurok Indian tribes to use the river for cultural purposes.

Table 5-11: Summary of Other Social and Environmental Effects of Dam Removal and KBRA Implementation

lecu

Effect of Dam Removal/KBRA

Green House Gasses (Section 4.4.11):

Dam removal would require power replacement in 2020 that would result in a net increase of greenhouse gas (GHG) emissions.

The Four Facilities would generate on average 909,835 MWh annually in 2020 through 2061 that would need to be replaced by other power sources if dams are removed. If PacifiCorp meets its California's Renewable Portfolio Standard (RPS) goal in 2020 of 33% renewable, the metric tons of carbon dioxide equivalent (MTCO $_2$ e) emitted from replacement power, is approximately 451,000 MTCO $_2$ e per year. Removal of the reservoirs would reduce these emissions by approximately 4,000 to 14,000 MTCO $_2$ e per year (less than 1 percent) based on the reduction of methane gas emitted from reservoir bottom sediments.

Societal views on dam removal and the KBRA (Section 4.4.12):

Klamath dam removal and basin restoration (KBRA) could only move forward with fiscal resources from PacifiCorp customers, California taxpayers, and US taxpayers. What value do individuals and households place on Klamath Basin fisheries recovery and restoration?

Local Ballot Measures

Local voting (November 2, 2010) results in Klamath County and Siskiyou County appear to be mixed, with a slight majority of Klamath County supporting participation in KBRA (52 %) and a large majority of Siskiyou County not supporting dam removal (79%).

Non-use Value Survey Responses

Responses to the nonuse value survey questions indicate a majority of respondents place a relatively high level of importance on improving the fisheries in the Klamath River Basin. This importance was indicated at the 12-county Klamath area level, statewide for Oregon and California, and for the rest of the nation.

In response to a question inquiring about the level of concern with declines in the number of Chinook salmon and steelhead trout that return to the Klamath River each year, the majority of respondents expressed concern.

- From the 12-county Klamath area, 73.8% expressed concern.
- For the rest of Oregon and California, 82.5% expressed concern.
- For the rest of the United States, 78.8% expressed concern.

Respondents surveyed indicated that an action plan to remove the dams and restore the basin was preferred to no-action. Noaction was defined as not implementing an agreement that includes dam removal, fish restoration, and a water sharing agreement.

- From the 12 county Klamath area, 54.7% favored an action plan
- For the rest of Oregon and California, 71.3% favored an action plan
- For the rest of the United States, 66.3% favored an action plan

This page intentionally left blank.

Section 6 References

Ackerman NK, B. Pyper, I. Courter, S. Cramer. 2006. Estimation of returns on naturally produced coho to the Klamath River - review draft. Klamath coho integrated modeling framework technical memorandum #1 of 8. Prepared by Cramer Fish Sciences, Gresham, Oregon for US Bureau of Reclamation, Klamath Basin Area Office, Klamath Falls, Oregon.

Administrative Law Judge. 2006. Decision in the matter of Klamath Hydroelectric Project, FERC Project Number 2082. Docket Number 2006-NOAA Fisheries Service-0001, September 27, 2006. Alameda, California.

http://www.fws.gov/yreka/P2082/20060927/2Klamath_DNO_Final.pdf

Akins, Glenn J. 1970. The Effects of Land Use and Land Management on the Wetlands of the Upper Klamath Basin. Thesis Presented to the Faculty of Western Washington State College. March 1970.

American Whitewater 1998. American Whitewater International Scale of Difficulty. Accessed on 9-30-2011. Available at: http://www.americanwhitewater.org/content/Wiki/safety:internation_scale_of _river_difficulty

Asarian, E. J. Kann, and W. Walker, 2009. Multi-year nutrient budget dynamics for Iron Gate and Copco reservoirs, California. Final Technical Report. Prepared by Kier Associates and Aquatic Ecosystem Sciences for the Karuk Tribe Department of Natural Resources, Orleans, California. Available at: http://www.riverbendsci.com/reports-and-publications-

1/Cop_IG_Budget_may05dec07_report_final.pdf?attredirects=0&d=1

Asarian E, J. Kann, W.W. Walker. 2010. Klamath River nutrient loading and retention dynamics in free-flowing reaches, 2005-2008. Prepared by Kier Associates and Aquatic Ecosystem Sciences for the Yurok Tribe Environmental Program, Klamath, California.

Association of State Dam Safety. 2011. Top Issues Facing the Dam Community. Accessed on: 7-11-2011. Available at: http://www.damsafety.org/news/?p=c0fdade4-ab98-4679-be22-e3d7f14e124f.

Bateman, I., A. Lovett, and J. Brainard. 2003. *Applied Environmental Economics*. Cambridge: Cambridge University Press.

Barr BR, Koopman ME, Williams CD, Vynne SJ, Hamilton R, and Doppelt B. 2010. Preparing for climate change in the Klamath basin. National Center for Conservation Science & Policy and The Climate Leadership Initiative. Accessed on 21 January 2011. Available online at: http://www.geosinstitute.org/images/stories/pdfs/Publications/ClimateWise/KlamathBasinCFFReport Final Long 20100901.pdf.

Barry B.R., M.E. Koopman, C.D. Williams, S.J. Vynne, R. Hamilton, and B. Doppelt. 2010. Preparing for climate change in the Klamath River basin. National Center for Conservation Science and Policy and The Climate Leadership Initiative. University of Oregon, Eugene.

Bartholomew J.L., I.I .Courter. 2007. Disease effects on coho survival in the Klamath River. Review draft. Technical Memorandum 6 of 8. Klamath Coho Integrated Modeling Framework Technical Memorandum Series, USDI Bureau of Reclamation, Klamath Basin Area Office, Oregon.

Bartholow JM. 2005. Recent water temperature trends in the lower Klamath River, California. North American Journal of Fisheries Management 25:152-162.

Beeman JW, Stutzer GM, Juhnke SD, Hetrick NJ. 2007. Survival and migration behavior of juvenile coho salmon in the Klamath River relative to discharge at Iron Gate Dam, 2006. Final Report. Prepared by U. S. Geological Survey, Cook, Washington and U. S. Fish and Wildlife Service, Arcata, California for US Bureau of Reclamation, Mid-Pacific Region, Klamath Basin Area Office, Klamath Falls, Oregon

Beeman JW, Juhnke S, Stutzer G, Hetrick N. 2008. Survival and migration behavior of juvenile coho salmon in the Klamath River relative to discharge at Iron Gate Dam, northern California, 2007. Open-File Report 2008–1332. US Geological Survey in cooperation with USDI Bureau of Reclamation. Accessed on January 12, 2012. Available online at: http://pubs.usgs.gov/of/2008/1332/pdf/ofr20081332.pdf

Benson R.L., S. Turo, B.W. McCovey. 2007. Migration and movement patterns of green sturgeon (Acipenser medirostris) in the Klamath and Trinity rivers, California, USA. Environmental Biology of Fishes 79: 269-279.

Bilton, H. T., D. F. Alderdice, and J. T. Schnute. 1982. Influence of time and size at release of juvenile coho salmon (Oncorhynchus kisutch) on returns at maturity. Canadian Journal of Fisheries and Aquatic Sciences 39: 426-447.

Bilton, H. T. 1984. Returns of Chinook salmon in relation to juvenile size at release. Canadian Technical Report of Fisheries and Aquatic Sciences 1245. Department of Fisheries and Oceans, Fisheries Research Branch, Pacific Biological Station, Nanaimo, British Columbia.

Blake v. Arnett, 663 F. 2d, 906. 909. 1981. United States Court of Appeals, Ninth Circuit. Board of Equalization. 2010. California Timber Harvest By County Year 2009. Accessed on February 17, 2011. Available at: http://www.boe.ca.gov/proptaxes/pdf/ytr362009.pdf

Brown, K. 2010. Staff Reply Testimony in the matter of PacifiCorp, dba Pacific Power Application to Implement the Provisions of Senate Bill 76. Redacted Version. May 26, 2010.

Buchanan D., M. Buettner, T. Dunne, G. Ruggerone. 2011. Scientific assessment of two dam removal alternatives on resident fish. Final report. Klamath River Expert Panel. Accessed on January 12, 2012. Available at:http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Resident%2 OFish%20Final%2004%2011%2011.pdf

Bureau of Indian Affairs (BIA). 2005. American Indian Population and Labor Force Report. Accessed on November 7, 2011. Available at: http://www.bia.gov/idc/groups/public/documents/text/idc-001719.pdf

Bureau of Land Management (BLM). 2003. 2002 and 2003 Upper Klamath River water temperature monitoring. Klamath Falls, Oregon. USDI BLM, Lakeview District, Klamath Falls Resource Area, Oregon.

Busby P.J., T.C. Wainwright, R.S. Waples. 1994. Status review for Klamath Mountains Province steelhead. NOAA Technical Memorandum NOAA Fisheries Service-NWFSC-19. National Marine Fisheries Service, Seattle, Washington.

Butler VL, Miller JA, Yang DY, Speller CF, Misarti N. 2010. The use of archaeological fish remains to establish pre-development salmonid biogeography in the Upper Klamath Basin. Prepared for National Marine Fisheries Service by Portland State University Department of Anthropology.

California Air Resources Board. 2007. Conversion of 1 MMT CO2 to Familiar Equivalents. Accessed on November 16, 2011. Available at: http://www.arb.ca.gov/cc/factsheets/1mmtconversion.pdf.

California Department of Fish and Game (CDFG). 1990. Status and management of spring run Chinook salmon. CDFG, Inland Fisheries Division.

CDFG. 2004. September 2002 Klamath River fish-kill: final analysis of contributing factors and impacts. Northern California-North Coast Region. Redding, California.

California Public Utilities Commission (CPUC). 2011. Proposed decision of Administrative Law Judge Wilson in Application 10-03-015. Before the Public Utilities Commission of the State of California In the Matter of PacifiCorp (U901E), an Oregon Company, for an Order Authorizing a Rate Increase Effective January 1, 2011 and Granting Conditional Authorization to Transfer Assets, pursuant to the Klamath Hydroelectric Settlement Agreement. Filed March 18, 2010.

CDM 2011a. Klamath Settlement Process: Greenhouse Gas Emissions from Power Replacement Technical Memorandum. November 2011. Available at: KlamathRestoration.gov

CDM 2011b. KBRA Regional Economics Effects IMPLAN Analysis. September 2011. Available at: KlamathRestoration.gov

CDM 2011c. Klamath Settlement Process Sediment Management in the Reservoirs. June 2011. Accessed on November 30, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Sediment%20 White%20Paper.pdf

CDM 2011d. Klamath Settlement Process Opinion of Probably Construction Cost for Removal of Reservoir Sediments in the Klamath Basin. March 2011. Available at: KlamathRestoration.gov

CDM 2011e. Screening-Level Evaluation of Contaminants in Sediments from Three Reservoirs and the Estuary of the Klamath River, 2009-2011. Prepared for U.S. Department of the Interior Klamath Dam Removal Water Quality Sub Team Klamath River Secretarial Determination. CDM, Sacramento, CA, 155 p + Appendixes. Accessed on December 21, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Klamath_Draft%20Sediment%20Interpretive%20Report%20Final.pdf

Cech, J.J. and Myrick, C.A. 1999. Steelhead and Chinook Salmon Bioenergetics: Termperature, Ration, and Genetic Effects. UC Water Resources Center Technical Completion Report W-885. University of California Water Resources Center, UC Berkeley.

Close D., M. Docker, T. Dunne, G. Ruggerone. 2011. Scientific assessment of two dam removal alternatives on lamprey. Final report. Klamath River Expert Panel. Accessed: November 2, 2011. Available at:

http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Lamprey%20Final%20EP%20Report%201-14-11.pdf

Cunanan M. 2009. Historic anadromous fish habitat estimates for Klamath River mainstem and tributaries under Klamath Hydropower reservoirs. U.S. Fish and Wildlife Service, Arcata, California.

Daniels, Brian I. 2003. Preliminary Shasta TCP Study. A draft report prepared for PacifiCorp, Portland, Oregon, by Brian Isaac Daniels from San Bruno, California.

Deur, D. 2004. Traditional Cultural Properties and Sensitive Resource Study, Klamath Tribes, Klamath Hydroelectric Project FERC Relicensing Documentation. Report prepared for The Klamath Tribes.

Dinse K, Read J, and D Scavia. 2009. Preparing for climate change in the Great Lakes region. MICHU 09-103. Michigan Sea Grant, University of Michigan, Ann Arbor, Michigan.

Department of the Interior (DOI), Klamath Basin Fisheries Task Force. 1991. Long Range Plan for the Klamath River Basin Conservation Area Fishery Restoration Program, Prepared with assistance of William M. Kier Associates, U.S. Fish and Wildlife Service, Yreka, CA.

DOI. 2000. Record of Decision Trinity River Mainstem Fishery Restoration Final Environmental Impact Statement/Environmental Impact Report. December.

DOI. 2007. Modified terms and conditions, and prescriptions for fishways filed pursuant to sections 4(e) and 18 of the Federal Power Act with the Federal Energy Regulatory Commission for the Klamath River Hydroelectric Project No. 2082. Bureau of Land Management, Bureau of Reclamation, Fish and Wildlife Service, and National Marine Fisheries Service. Sacramento, California.

DOI. 2011a. Background Technical Report Informing the Secretarial Determination Overview Report: Current Effects of PacifiCorp Dams on Indian Trust Resources and Cultural Values. Sacramento, CA. Report Dated June 2011. Accessed on: November 2, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Cultural.Curre nt%20Effects%20Report.june.2011.pdf

DOI. 2011b. Background Technical Report Informing the Secretarial Determination Overview Report: Potential Effects of Implementing the KHSA AND KBRA on Trust Resources and Cultural Values. Sacramento, CA. Report Dated June 2011. Accessed on: November 2, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Cultural.Poten tial%20Effects.june.2011.Final%20Draft.pdf

DOI. 2011c. Dam Removal Real Estate Evaluation Report for U.S. Department of the Interior Office of Valuation Services. Charles W. LaFlamme, MAI. ARRTS Number: LD72AK. By Report Dated March 22, 2011.

DOI. 2011d. Whitewater Boating Recreation Economics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. U.S. Department of the Interior, Office of Policy Analysis. September 2011. Accessed on: November 2, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Klamath%20 Whitewater%20Boating%20Recreation%20Economics%20Technical%20Report_Sept%202011.pdf

Dillinger, T.L., S.C. Jett, M.J. Macri, and L.E. Grivetti. May 1999. "Feast or Famine? Supplemental food programs and their impacts on two American Indian communities in California." International Journal of Food Science and Nutrition 50(3): 173-187

Drought Plan Lead Entity. 2011. Klamath Basin Restoration Agreement Drought Plan. July 11, 2011. Accessed on: November 2, 2011. Available at: http://216.119.96.156/Klamath/library/DroughtPlan2011 0711.pdf

Dunne T, G. Ruggerone, D. Goodman, K. Rose, W. Kimmerer, J. Ebersole. 2011. Scientific assessment of two dam removal alternatives on coho salmon and steelhead. Klamath River Expert Panel final report. April 25, 2011. Accessed on December 21, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/FINAL%20Rep ort_Coho%20Salmon-

Steelhead_Klamath%20Expert%20Panels_04%2025%2011.pdf

Federal Highway Administration (FHWA). 2010. Regional climate change effects: useful information for transportation agencies. Contract No. DTFH61-05-D-00019; TOPR No. EV0101. Prepared for Office of Planning, Environment and Realty, Office of Infrastructure, Federal Highway Administration, U.S. Department of Transportation by ICF International, Washington, DC.

Federal Energy Regulatory Commission (FERC). 1990. Final environmental impact statement: Salt Caves Hydroelectric Project. FERC Project No. 10199-000. Federal Energy Regulatory Commission, Washington, D. C.

FERC 2007. Final Environmental Impact Statement for Hydropower License, Klamath Hydroelectric Project, FERC Project No. 2082-027, FERC/EIS-0201F. Washington, DC, Federal Energy Regulatory Commission, Office of Energy Projects, Division of Hydropower Licensing.

Gannett M.W., K.E. Lite Jr, J.L. La Marche, B.J. Fisher, D.J. Polette. 2010. Ground-water hydrology of the upper Klamath Basin, Oregon and California. Scientific Investigations Report 2007-5050. Prepared by U.S. Geological Survey in cooperation with the Oregon Water Resources Department. Available at: http://www.klamathbasincrisis.org/aquifer/sir20075050.pdf

Gatschet AS. 1890. The Klamath Indians of southwestern Oregon: ethnographic sketch of the people. U.S. Geographical and Geological Survey of the Rocky Mountain Region, U.S. Government Printing Office, Washington, D.C. Available at: http://www.archive.org/details/klamathindiansof01gatsuoft (1 of 2) and http://www.archive.org/details/klamathindiansof02gatsuoft (2 of 2)

Goodman D., M. Harvey, R. Hughes, W. Kimmerer, K, Rose, K., and G. Ruggerone. 2011. Scientific Assessment of Two Dam Removal Alternatives on Chinook Salmon. Final Report from the Expert Panel. Addendum to Final Report., July 20, 2011. Accessed on: November 2, 2011. Available at http://klamathrestoration.gov/sites/klamathrestoration.gov/files/FINAL%20Report_Chinook%20Salmon_Klamath%20Expert%20Panels_07%2021%2011%20Add endum.pdf

Gresh, T., J. Lichatowich and P. Schoonmaker. 2000. An estimation of historic and current levels of salmon production in the Northeast Pacific ecosystem: evidence of a nutrient deficit in the freshwater systems of the Pacific Northwest. Fisheries 25(1): 15-21

Gutermuth B, C. Watson, J. Kelly. 2000. Link River Hydroelectric Project (Eastside and Westside Powerhouses). Final Entrainment Study Report. Cell Tech, Klamath Falls, Oregon and PacifiCorp Environmental Services, Portland, Oregon.

Hamilton JB, G.L. Curtis, S.M. Snedaker, D.K. White. 2005. Distribution of anadromous fishes in the upper Klamath River watershed prior to hydropower dams - a synthesis of the historical evidence. Fisheries 30: 10-20.

Hamilton J, B., D. Rondorf and C. Ellsworth. 2010. Williamson River Water Temperature Survey - Note to Klamath River Secretarial Determination Files. Yreka CA, U.S. Fish and Wildlife Service, Yreka Fish and Wildlife Office; 7p.

Hamilton J., D. Rondorf, M. Hampton, R. Quinones, J. Simondet, T. Smith. 2011. Synthesis of the Effects to Fish Species of Two Management Scenarios for the Secretarial Determination on Removal of the Lower Four Dams on the Klamath River. 175p. Accessed on December 21, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/SD%20Fish%2 OSynthesis%2006-13-2011%20FINAL.pdf

Hendrix N. 2011. Forecasting the response of Klamath Basin Chinook populations to dam removal and restoration of anadromy versus no action. Report Dated September 2011. R2 Resource Consultants, Redmond, Washington. Accessed on December 21, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/EDRRA%20Report%20Hendrix%2012.15..11.pdf

Hetrick N.J., T.A. Shaw, P. Zedonis, J.C. Polos, and C.D. Chamberlain. 2009. Compilation of information to inform USFWS principals on the potential effects of the proposed Klamath Basin Restoration Agreement (Draft 11) on fish and fish habitat conditions in the Klamath Basin, with emphasis on fall Chinook salmon. US Fish and Wildlife Service, Arcata Fish and Wildlife Office, Arcata, California.

Hetrick N.J., T.A. Shaw, P. Zedonis, J.P. Polos. 2010. Compilation of information to inform USFWS principals on technical aspects of the Klamath Basin Restoration Agreement relating to fish and fish habitat conditions. Arcata Fisheries Technical Report TR 2009-11. U.S. Fish and Wildlife Service, Arcata Fish and Wildlife Office, Arcata, California.

Hoopa Valley Tribe Environmental Protection Agency (HVTEPA). 2008. Water quality control plan: Hoopa Valley Indian Reservation. Approved 11 September 2002, Amendments Approved 14 February 2008. Hoopa Valley Tribal Environmental Protection Agency, Hoopa, California.

Horne A.J., C.R. Goldman 1994. Limnology. Second edition. McGraw-Hill Inc., New York.

http://www.fws.gov/arcata/newsReleases/KBRAEffects/USFWS%20Arcata%20Klamath%20Compilation%20Cover.pdf

Huntington C.W. 2006. Estimates of anadromous fish runs above the site of Iron Gate Dam. Clearwater BioStudies, Inc, Canby, Oregon.

Huntington C.W., L.K. Dunsmoor. 2006. Suitability of environmental conditions within upper Klamath Lake and the migratory corridor downstream for use by anadromous salmonids. Technical Memorandum. Prepared for the Klamath Tribes.

Institute for Fisheries Resources and Pacific Coast Federation of Fishermen's Associations. 2006. Appendix to: Comments on Application and Section 4 Recommendations for Klamath Hydroelectric Project, FERC No .P-2082-027. Klamath Falls, OR, Institute for Fisheries Resources.

Intergovernmental Panel on Climate Change (IPCC). 1996. Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to the Second

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, Great Britain: Press Syndicate of the University of Cambridge.

Jackson County Parks. 2010. Jackson County Parks Website. Accessed 30 January 2011. Available at: http://www.jacksoncountyparks.com/

Jacoby J.M., J. Kann. 2007. The occurrence and response to toxic cyanobacteria in the Pacific Northwest, North America. Lake and Reservoir Management 23:123-143.

Kann J., S. Corum. 2007. Summary of 2006 toxic Microcystis aeruginosa and Microcystin trends in Copco and Iron Gate Reservoirs, CA. Technical memorandum. Prepared for the Karuk Tribe Department of Natural Resources.

Kann J, Bowater L, Johnson G, and Bowman C. 2011. Preliminary 2010 microcystin bioaccumulation results for Klamath River salmonids. Technical Memorandum. Prepared by Aquatic Ecosystem Sciences LLC for the Karuk Tribe Department of Natural Resources, Orleans California.

Kann J. 2007a. Toxic cyanobacteria results for Copco/Iron Gate reservoirs: 31 May and 12–13 June 2007. Technical memorandum from J. Kann, Aquatic Ecologist, Aquatic Ecosystem Sciences, LLC, Ashland, Oregon. 19 June.

Kann J. 2007b. Toxic cyanobacteria results for Copco/Iron Gate reservoirs: 26–27 June. Technical memorandum from J. Kann, Aquatic Ecologist, Aquatic Ecosystem Sciences, LLC, Ashland, Oregon. 29 June.

Kann J. 2007c. Toxic cyanobacteria results for Copco/Iron Gate reservoirs: 10–11 July 2007. Technical memorandum from J. Kann, Aquatic Ecologist, Aquatic Ecosystem Sciences, LLC, Ashland, Oregon. 16 July.

Kann J. 2007d. Toxic cyanobacteria results for Copco/Iron Gate reservoirs: 7–8 August 2007. Technical memorandum from J. Kann, Aquatic Ecologist, Aquatic Ecosystem Sciences, LLC, Ashland, Oregon. 15 August.

Kann J. 2008. Microcystin bioaccumulation in Klamath River fish and freshwater mussel tissue: preliminary 2007 results. Technical Memorandum. Prepared by Aquatic Ecosystem Sciences for Karuk Tribe of California, Orleans, California.

Kann J. 2010a. Compilation of Klamath Tribes upper Klamath Lake water quality data, 1990–2009. Prepared by Aquatic Ecosystem Sciences, LLC, Ashland, Oregon for the Klamath Tribes Natural Resources Department, Chiloquin, Oregon.

Kann, J. 2010b. Technical Memorandum. Karuk Tribe Klamath River Toxic Algae and Microcystin Monitoring Results through October 20, 2010. Prepared by J. Kann for Karuk Tribe of California Natural Resources Department, October 26, 2010. 11 pp.

Kann J, Walker WW. 1999. Nutrient and hydrological loading to Upper Klamath Lake, Oregon, 1991-1998. Prepared by Aquatic Ecosystem Sciences, Ashland, Oregon for Klamath Tribes Natural Resources Department, Chiloquin, Oregon.

Kannarr KE, Tanner DQ, Lindenberg MK, Wood TM. 2010. Water-quality data from Upper Klamath and Agency lakes, Oregon, 2007–08. Open-File Report 2010–1073.

US Geological Survey. http://pubs.usgs.gov/of/2010/1073/of20101073.pdf

Kappler, Charles J. 1904. Ed. *Treaty with the Klamath, etc.*, 1864. Oct. 1864. Ratified, July 1866. Proclaimed Feb. 1870. In *Indian Affairs and Treaties*. Vol. 2. Washington: Government Printing Office.

Karuk Tribe of California. 2006. Comments on Draft EIS in Klamath Hydroelectric Project Docket for Filing: P-2082-027 (Klamath). Submitted to FERC by the Karuk Tribe of California, Orleans, CA. 60 p. Accessed on July 7, 2011. Available online at:

http://www.klamathwaterquality.com/documents/karuk_comments_20061201 -5040(16445270).pdf.

Kiffney P.M., G. Pess, Anderson J, P. Faulds, K. Burton, S. Riley. 2009. Changes in fish communities following recolonization of the Cedar River, WA, USA by Pacific salmon after 103 years of local extirpation. River Research and Applications 25: 438-452.

Kirk S., D. Turner, J. Crown 2010. Upper Klamath and Lost River subbasins Total Maximum Daily Load (TMDL) and Water Quality Management Plan (WPMP). Oregon Department of Environmental Quality, Portland.

Klamath Basin Restoration Agreement (KBRA). 2010. Signed Portland, OR. February 18, 2010. Accessed on May 18, 2011. Available at: http://klamathrestoration.gov/sites/ klamathrestoration.gov/files/Klamath-Agreements/Klamath-Basin-Restoration-Agreement-2-18-10signed.pdf

Klamath Hydroelectric Settlement Agreement (KHSA). 2010. Signed Portland, OR. February 18, 2010. Accessed Online August 17, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Klamath-Agreements/Klamath-Hydroelectric-Settlement-Agreement-2-18-10signed.pdf

Kroeber, A.L. and Samuel A. Barrett. 1960. Fishing Among the Indians of Northwestern California. In: University of California Publications, Anthropological Records Vol. 21, No.1. Berkeley, CA.

Kuwabara JS, Topping BR, Carter JL, Parchaso F, Cameron JM, Asbill JR, Fend SV, Duff JH, Engelstad AC. 2010. The transition of benthic nutrient sources after planned levee breaches adjacent to Upper Klamath and Agency lakes, Oregon. Open-File Report 2010-1062. US Geological Survey. http://pubs.usgs.gov/of/2010/1062/of2010-1062.pdf

Larson, Z.S., M.R. Belchik 1998. A preliminary status review of eulachon and Pacific lamprey in the Klamath Basin. Yurok Tribal Fisheries Program, Klamath, California.

Larson, R., Brush, B.J. 2010. Upper Klamath Basin Wetlands: An Assessment. U.S. Fish and Wildlife Service. Klamath Falls, Oregon.

Leidy, R.A., G.R. Leidy 1984. Life stage periodicities of anadromous salmonids in the Klamath River basin, northwestern California. Sacramento, California, USDI Fish and Wildlife Service: 1-30.

Lindley, S.T., H. Davis. 2011. Using model selection and model averaging to predict the response of Chinook salmon to dam removal. Review Draft Report. May 16, 2011 National Marine Fisheries Service, Fisheries Ecology Division, NMFS Southwest Fisheries Science Center, Santa Cruz, California. Accessed on December 21. 2011. Available online at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/lindleyDavis% 20Review%20Draft.pdf

Lynch, D.D. and R.C. Risley. 2003. Klamath river basin hydrologic conditions prior to the September 2002 die-off of salmon and steelhead. U.S. Geological Survey. WRIR 03-4009

Lynch, D. 2011. Feasibility of Mechanical Sediment Removal. August 30, 2011. Accessed on November 30, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/lynch.memo.8 .30.11.mech.dredge..pdf

Maule AG, VanderKooi SP, Hamilton JB, Stocking R, Bartholomew J. 2009. Physiological development and vulnerability to Ceratomyxa shasta of fall-run Chinook salmon in the Upper Klamath River watershed. North American Journal of Fisheries Management 29: 1743-1756.

Mauser, D., T. Mayer. 2011. Effects of the Klamath Basin Restoration Agreement to Lower Klamath, Tule Lake, and Upper Klamath National Wildlife Refuges. US Fish and Wildlife Service. Accessed on December 21, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Final%20refuge%20%20KBRA%20report.pdf

M. Cubed. 2007. Economic Modeling of Relicensing and Decommissioning Options for the Klamath Basin Hydroelectric Project: Addendum A Response to PacifiCorp's Comments on the Klamath Project Alternatives Analysis Model. April 2007.

McElhany, P, Rucklelshaus MH, Ford MJ, Wainwright TC, Bjorksstedt E. 2000. Viable salmonid populations and the recovery of evolutionarily significant units. NOAA Technical Memorandum NMFS-NWFSC-42.

Miller, MA, Kudela RM, Mekebri A, Crane D, Oates SC, and et al. 2010. Evidence for a novel marine harmful algal bloom: cyanotoxin (microcystin) transfer from land to sea otters. PLoS ONE 5: e12576. doi:10.1371/journal.pone.0012576.

Moyle, P.B., R.M. Yoshiyama, J.E. Williams, E.D. Wikramanayake. 1995. Fish species of special concern in California. Prepared by Department of Wildlife and Fisheries Biology, University of California, Davis for California Department of Fish and Game, Inland Fisheries Division, Rancho Cordova.

Moyle, P.B. 2002. Inland fishes of California. Second edition. University of California Press, Berkeley.

Moyle, P.B., J.A. Isreal, S.E. Purdy. 2008. Salmon, steelhead, and trout in California: status of an emblematic fauna. Prepared for California Trout by University of California Davis, Center for Watershed Sciences.

National Research Council (NRC). 2004. Endangered and threatened fishes in the Klamath Basin: causes of decline and strategies for recovery. The National Academies Press, Washington, D.C.

http://www.nap.edu/openbook.php?isbn=0309090970

NRC. 2008. Hydrology, ecology, and fishes of the Klamath Basin. The National Academies Press, Washington, D.C: The National Academies Press. Accessed on December 21, 2011. Available at:

http://www.nap.edu/catalog.php?record_id=12072#orgs

Nawa, R. 2003. A petition for rules to list: Pacific lamprey (Lampetra tridentata); river lamprey (Lampetra ayresi); western brook lamprey (Lampetra richardsoni); and Kern brook lamprey (Lampetra hubbsi) as threatened or endangered under the Endangered Species Act. Letter to U.S. Fish and Wildlife Service, Washington, D.C.

Newcombe, C. P., and J. O. T. Jensen. 1996. Channel suspended sediment and fisheries: a synthesis for quantitative assessment of risk and impact. North American Journal of Fisheries Management 16: 693–727.

Nichols, K., and K. True 2007. Monitoring incidence and severity of Ceratomyxa shasta and Parvicapsula minibicornis infections in juvenile Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) in the Klamath River, 2006. FY 2006 Investigational Report. US Fish and Wildlife Service, California-Nevada Fish Health Center, Anderson, California.

Nichols, K., K. True, E. Wiseman, and J.S. Foott. 2007. Incidence of Ceratomyxa shasta and Parvicapsula minibicornis infections by QPCR and histology in juvenile Klamath River Chinook Salmon. FY2005 Investigational Report. US Fish and Wildlife Service, California-Nevada Fish Health Center, Anderson, California.

NOAA Fisheries Service. 2001. Endangered and threatened species: final listing determination for Klamath Mountains Province steelhead. Federal Register 66:17845-17856.

NOAA Fisheries Service. 2002. Biological opinion: Klamath Project Operations. NOAA Fisheries Service, Southwest Region. Long Beach, California.

NOAA Fisheries Service. 2006. Endangered and threatened wildlife and plants: threatened status for Southern Distinct Population Segment of North American green sturgeon: final rule. Federal Register 71: 17757-17766.

NOAA Fisheries Service. 2007. Magnuson-Stevens Reauthorization Act Klamath River coho salmon recovery. Prepared by FR Rogers, Lagomarsino IV, and

Simondet JA for NOAA Fisheries Service, Southwest Region, Long Beach, California.

NOAA Fisheries Service. 2009. Klamath River Basin: 2009 Report to Congress. Arcata, California. Available at: http://swr.nmfs.noaa.gov/klamath/index.htm

NOAA Fisheries Service. 2010. Biological opinion on the operation of the Klamath Project between 2010 and 2018. Prepared for U.S. Bureau of Reclamation by NMFS, Southwest Region.

Available at: http://www.usbr.gov/mp/kbao/operations/FINAL%20-Klamath%20Ops_3-15-10.pdf

NOAA Fisheries Service. 2011a Commercial Fishing Economics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Accessed on November 2, 2011. Available

http://klamathrestoration.gov/sites/klamathrestoration.gov/files/EIS-EIR-Draft/Econ-Reports/CommFishery_9.14.pdf

NOAA Fisheries Service 2011b. Hoopa Valley Tribe Fishery Socioeconomic Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Accessed on November 2, 2011. Report dated September 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/EIS-EIR-Draft/Econ-Reports/Tribes/Hoopa_9-15_FULL%20(2).pdf

NOAA Fisheries Service 2011c. In-River Sport Fishing Economics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Accessed on November 2, 2011. Available

http://klamathrestoration.gov/sites/klamathrestoration.gov/files/EIS-EIR-Draft/Econ-Reports/InriverRecrFisheries 9.14.pdf

NOAA Fisheries Service 2011d. Karuk Tribe Fishery Socioeconomics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Accessed on November 2, 2011. Available

http://klamathrestoration.gov/sites/klamathrestoration.gov/files/EIS-EIR-Draft/Econ-Reports/Tribes/Karuk_9-16_FULL%20(2).pdf

NOAA Fisheries Service 2011e. Klamath Tribe Fishery Socioeconomics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Report dated August 2011. Accessed on November 2, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/EIS-EIR-Draft/Econ-Reports/Tribes/Klamath%20Tribes_9-16_FULL.pdf

NOAA Fisheries Service 2011g. Resighini Rancheria Fishery Socioeconomics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Report dated September 2011. Accessed on November 2, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Resighini.9.25. final.pdf

NOAA Fisheries Service 2011h. Yurok Tribe Fishery Socioeconomics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Accessed on November 2, 2011. Report dated September 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/EIS-EIR-Draft/Econ-Reports/Tribes/Yurok 9-16 FULL.pdf

Norgaard, K. M. 2004. "The Effects of Altered Diet on the Health of the Karuk People." Written under contract by The Karuk Tribe of California: Department of Natural Resources Water Quality Program. Report Dated August 2004.

North Coast Regional Water Quality Control Board (NCRWQCB). 2010a. Action plan for the Klamath River total maximum daily loads addressing temperature, dissolved oxygen, nutrient, and microcystin impairments in the Klamath River in California and Lost River implementation plan. Santa Rosa, California. Accessed Online August 17, 2011. Available at:

http://www.swrcb.ca.gov/northcoast/water_issues/programs/tmdls/klamath_river/.

NCRWQCB. 2010b. Final staff report for the Klamath River Total Maximum Daily Loads (TMDLs) addressing temperature, dissolved oxygen, nutrient, and Microcystin impairments in California, the proposed site-specific dissolved oxygen objectives for the Klamath River in California, and the Klamath River and Lost River implementation plans. State of California North Coast Regional Water Quality Control Board, Santa Rosa, California. http://www.swrcb.ca.gov/northcoast/water_issues/programs/tmdls/klamath_river/

Office of Management and Budget (OMB). 2004. Final Information Quality Bulletin for Peer Review. December16, 2004. Accessed on: January 20, 2012. Available at: http://www.whitehouse.gov/sites/default/files/omb/memoranda/fy2005/m05-03.pdf

Oregon Climate Change Research Institute (OCCRI). 2010. Oregon climate assessment report. Dello KD, and Mote PW, editors. College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon. www.occri.net/OCAR.

Oregon Department of Environmental Quality (ODEQ). 2002. Upper Klamath Lake drainage Total Maximum Daily Load and Water Quality Management Plan. ODEQ, Portland.

ODEQ. 2010. Upper Klamath and Lost Rivers TMDL and WQMP. Accessed Online August 17, 2011. Available at: http://www.deq.state.or.us/wq/tmdls/klamath.htm#upks.

Oregon Public Utilities Commission (OPUC). 2011. In the Matter of PacifiCorp, dba Pacific Power. Application to Implement the Provisions of Senate Bill 76. Order No. 10-364. September 16, 2010.

Oregon Water Resources Department (OWRD) 2010. Klamath Basin Adjudication, Claim and Contest Information as of July 26, 2010. Accessed Online August 17, 2011. Available at:

http://www.oregon.gov/OWRD/ADJ/docs/Status_of_the_Adjudication.pdf

PacifiCorp. 2004. Executive summary. Application for new license for major project. Klamath Hydroelectric Project (FERC Project No. 2082). Portland, Oregon.

PacifiCorp. 2005. Klamath River water quality model implementation, calibration, and validation: response to FERC AIR GN-2, Status Report, Klamath River water quality modeling, Klamath Hydroelectric Project Study 1.3 (FERC Project No. 2082). Portland, Oregon.

PacifiCorp. 2006. PacifiCorp's comments on the Federal Energy Regulatory Commission's Draft Environmental Impact Statement for Klamath Hydroelectric Project (FERC no. 2082) in Oregon and California. Portland, Oregon.

PBS&J. 2010. Expert Review of Stillwater Sciences. 2009. Effects of sediment release folloing dam removal on the aquatic biota of the Klamath River. November 2010. Raleigh, NC.

Perry, Russell W., Risley, John C., Brewer, Scott J., Jones, Edward C., Rondorf, Dennis W. 2011. Simulating daily water temperatures in the Klamath River under alternative water management actions and climate change scenarios: U.S. Geological Survey Open File Report 2011-1243, 78.p.

Petersen Lewis, R.S. 2009. Yurok and Karuk traditional ecological knowledge: insights into Pacific lamprey populations of the lower Klamath Basin. American Fisheries Society Symposium 72: 1-39.

Platts W.S., F.E. Partridge. 1978. Rearing of chinook salmon in tributaries of the South Fork Salmon River, Idaho. Research Paper Int-205. USDA Forest Service, Intermountain Forest and Range Experiment Station.

Quiñones R.M. 2011. Recovery of Pacific salmonids (Oncorhynchus spp.) in the face of climate change: a case study of the Klamath River basin, California. Doctoral dissertation. University of California, Davis.

Raymond R. 2008. Water quality conditions during 2008 in the vicinity of the Klamath Hydroelectric Project. Prepared by E&S Environmental Chemistry, Corvallis for CH2M Hill and PacifiCorp Energy, Portland, Oregon.

Raymond R. 2010a. Water quality conditions during 2009 in the vicinity of the Klamath Hydroelectric Project. Prepared by E&S Environmental Chemistry, Corvallis for CH2M Hill and PacifiCorp Energy, Portland, Oregon.

Raymond 2010b. Technical memorandum: Results of Cyanobacteria and Microcystin Monitoring in the Vicinity of the Klamath Hydroelectric Project: October 18, 2010. Prepared by Richard Raymond of E&S Environmental Chemistry for Tim Hemstreet and Linda Prendergast of PacifiCorp. 14 pp.

Reclamation 2010a. U.S. Department of Interior, Bureau of Reclamation. 2010. Klamath Secretarial Determination Engagement and Outreach Plan 2010.

Reclamation 2010b. U.S. Department of Interior, Bureau of Reclamation. 2010. Quality Assurance Project Plan Sediment Contaminant Study, Klamath River Sediment Sampling Program JC Boyle, Copco-1, Copco-2, and Iron Gate Reservoirs; Klamath River Estuary Revision 2: August.

Reclamation 2011a. Benefit Cost and Regional Economic Development Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. September 2011. Accessed on November 2, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/EIS-EIR-Draft/Econ-Reports/BC%20RED%20Tech%20Report%20(accessible).pdf

Reclamation 2011b. Detailed Plan for Dam Removal – Klamath River Dams. Klamath Hydroelectric Project FERC License No. 2082, Oregon-California. Report dated September 15, 2011. Accessed on November 2, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Klamath_DetailedPlan2011.pdf

Reclamation 2011c. Economics and Tribal Summary Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Report dated September 2011. Accessed on November 2, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/EIS-EIR-Draft/Econ-Reports/Economics-Tribal_9-12_FULL(accessible).pdf

Reclamation 2011d. Hoopa Valley Tribe Sociocultural/Socioeconomic Effects Analysis Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Bureau of Reclamation Technical Services Center, Denver CO. Accessed on November 2, 2011.

Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/EIS-EIR-Draft/Econ-Reports/Tribes/Hoopa_9-15_FULL%20(2).pdf

Reclamation 2011e. Hydrology, Hydraulics and Sediment Transport Studies for the Secretary's Determination on Klamath River Dam Removal and Basin Restoration. Technical Report SRH-2011-02. Prepared for Mid-Pacific Region, US Bureau of Reclamation, Technical Service Center, Denver, Colorado. Report dated April 2011. Accessed on November 2, 2011. Available at:

http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Hydrology%20 Study/Klamath_Sed_Report_Final_Full.pdf

Reclamation 2011f. Hydropower Benefits Technical Report for the Secretarial Determination on Whether to Remove Four Damns on the Klamath River in California and Oregon. August 2011. Accessed on November 2, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/EIS-EIR-Draft/Econ-Reports/Hydropower_8-30(accessible).pdf

Reclamation 2011g. Irrigated Agriculture Economics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. September 2011. Accessed on November 2, 2011.

Available at:

http://klamathrestoration.gov/sites/klamathrestoration.gov/files/FIS-FIR-

http://klamathrestoration.gov/sites/klamathrestoration.gov/files/EIS-EIR-Draft/Econ-Reports/Irrigated%20Ag_9-9(accessible).pdf

Reclamation 2011h. Karuk Tribe Sociocultural/Socioeconomics Effects Analysis Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Bureau of Reclamation Technical Services Center, Denver CO. Report Dated: September 2011. Accessed on November 2, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/EIS-EIR-Draft/Econ-Reports/Tribes/Karuk_9-16_FULL%20(2).pdf

Reclamation 2011i. Klamath Tribes Sociocultural/Socioeconomics Effects Analysis Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Bureau of Reclamation Technical Services Center, Denver CO. Accessed on November 2, 2011.

Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Econ_Klamath Tribes_9.20.pdf

Reclamation 2011j. Refuge Recreation Economics Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Final Draft Report. Report Dated September, 2011. Accessed on November 2, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Klamath%20R efuge%20Recreation%202012%20dollars_Final%20Draft%20Report1%209_13_1 1.pdf

Reclamation 2011k. Reservoir Area Management Plan for the Secretary's Determination on Klamath River Dam Removal and Basin Restoration. Technical Report No. SRH-2011-19. Prepared for Mid-Pacific Region, US. Bureau of Reclamation, Technical Service Center, Denver, CO. Accessed on December 21, 2011.

Available at:

http://klamathrestoration.gov/sites/klamathrestoration.gov/files/EIS-EIR-Draft/Reservoir_Site_Management_Plan_Final.pdf

Reclamation 2011l. Resighini Rancheria Tribe Sociocultural/Socioeconomics Effects Analysis Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Bureau of

Reclamation Technical Services Center, Denver CO. Accessed on November 2, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Econ_Resighin i 9.20.pdf

Reclamation 2011m. SECURE Water Act Section 9503(c) – Reclamation Climate Change and Water, Report to Congress, 2011. Report Dated April 2011.

Reclamation 2011n. Sediment Chemistry Investigation: Sampling, Analysis, and Quality Assurance Findings for Klamath River Reservoirs and Estuary, October 2009 - January 2010; In Support of the Secretarial Determination on Klamath River Dam Removal and Basin Restoration, Klamath River, Oregon and California. Accessed on November 2, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Klamath%20S ediment%20Chemistry%20Report_050411_bookmarked.pdf

Reclamation 2011o. Yurok Tribe Sociocultural/ Socioeconomic Effects Analysis Technical Report for the Secretarial Determination on Whether to Remove Four Dams on the Klamath River in California and Oregon. Accessed on November 2, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Econ_Yurok_9 .20.pdf

Regional Sediment Evaluation Team. 2009. Sediment evaluation framework for the Pacific Northwest. Prepared by Regional Sediment Evaluation Team: U.S. Army Corps Of Engineers-Portland District, Seattle District, Walla Walla District, and Northwestern Division; U.S. Environmental Protection Agency, Region 10; Washington Department of Ecology; Washington Department of Natural Resources; Oregon Department of Environmental Quality; Idaho Department of Environmental Quality; National Marine Fisheries Service; and U.S. Fish and Wildlife Service

Rode M. 1990. Bull trout, Salvelinus confluentus (Suckley), in the McCloud River: status and recovery recommendations. Inland Fisheries Administrative Report. 90-15. California Department of Fish and Game, Sacramento.

RTI International 2011. Klamath River Basin Restoration Nonuse Value Survey Final Report. Report dated December 2011. Research Triangle Park, NC: RTI International.

Salathe, EP, Jr., Leung LR, Qian Y, and Zhang Y. 2010. Regional climate model projections for the state of Washington. Climate Change 102: 51–75, doi:10.1007/s10584-010-9849-y

Scott, C.E. 2010. Direct Testimony before the Public Utilities Commission of the State of California. March 2010.

Shannon and Wilson Inc. 2006. Sediment Sampling, Geotechnical Testing, and Data Review Report, Segment of Klamath River, Oregon and California: Shannon & Wilson, Inc., 145 p

Simon, N.S. and S.N. Ingle. 2011. Physical and chemical characteristics including total and geochemical forms of phosphorus in sediment from the top 30 centimeters of cores collected in October 2006 at 26 sites in the Upper Klamath Lake, Oregon. U.S. Geological Survey. Open File Report 2011-1168.

Sloan, K. 2011. Yurok and the Klamath River: Yurok Historical Context and Data for Assessing Current Conditions and the Effects of the proposed Klamath Restoration Project on Yurok Tribal Trust Assets and Yurok Resources of Cultural and Religious Significance. Prepared for the Department of the Interior, Bureau of Indian Affairs.

Snyder, J.O. 1931. Salmon of the Klamath River, California. Fish Bulletin No. 34: 5-22. Division of Fish and Game of California, Sacramento.

Snyder, D.T. and J.L. Morace. 1997. Nitrogen and phosphorus loading from drained wetlands adjacent to Upper Klamath and Agency Lakes, Oregon. U.S. Geological Survey, WRIR 97-4059.

Spier, L. 1930. Klamath Ethnography. University of California Publications in American Archaeology and Ethnology, Vol. 30. Berkeley: University of California Press.

Spina A.P. 2007. Thermal ecology of juvenile steelhead in a warm-water environment. Environmental Biology of Fishes, 80:23–24.

State Water Resources Control Board, California Department of Public Health and Office of Environmental Health and Hazard Assessment. 2010 Cyanobacteria in California recreational water bodies: providing voluntary guidance about harmful algal blooms, their monitoring, and public notification. Blue Green Algae Work Group of the State Water Resources Control Board, the California Department of Public Health, and Office of Environmental Health and Hazard Assessment.

Stillwater Sciences. 2008. Klamath River dam removal study: sediment transport DREAM-1 simulation. Technical report. Prepared by Stillwater Sciences, Arcata, California for California Coastal Conservancy, Oakland, California.

Stillwater Sciences. 2009. Effects of sediment release following dam removal on the aquatic biota of the Klamath River. Technical report. Prepared by Stillwater Sciences, Arcata, California for State Coastal Conservancy, Oakland, California. http://www.usbr.gov/mp/kbao/kbra/docs/other/Klamath%20Dam%20Removal %20Biological%20Analysis_FINAL.pdf

Stillwater Sciences. 2010. Potential responses of coho salmon and steelhead downstream of Iron Gate Dam to No-Action and Dam-Removal alternatives for the Klamath Basin. Prepared by Stillwater Sciences, for USDI Bureau of Reclamation in support of the Biological Subgroup for the Klamath Basin Secretarial Determination. Arcata. California.

Stillwater Science 2011a. Klamath Dam Removal Drawdown Scenario 8: Potential impacts of suspended sediments on focal fish species with and without mechanical sediment removal. Final Technical Memorandum. April 2011.

Accessed on: November 30, 2011. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/SWS%202011 Scenario8DredgingMemo Final.pdf

Stillwater Sciences. 2011b. Model development and estimation of short-term impacts of dam removal on dissolved oxygen in the Klamath River. Final Report. Prepared by Stillwater Sciences, Berkeley, California for the Water Quality Subteam, Klamath River Secretarial Determination. 39p. Report dated September 2011. Accessed December 21, 2011. Available online at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/001.Klamath% 20IOD-BOD Final Model Report 09 21 2011.pdf

Stocking, R.W., and J.L. Bartholomew. 2007. Distribution and habitat characteristics of Manayunkia speciosa and infection prevalence with the parasite Ceratomyxa shasta in the Klamath River, Oregon-California. Journal of Parasitology 93: 78-88.

Strobel, B. Portland Water Bureau, Personal Communication.

Sullivan AB, M.L. Deas, J. Asbill, J.D. Kirshtein, K. Butler, and J. Vaughn. 2009. Klamath River water quality data from Link River Dam to Keno Dam, Oregon, 2008. U.S. Geological Survey Open File Report 2009-1105. Prepared by the U.S. Department of the Interior, U.S. Geological Survey, Reston, Virginia.

Sullivan, A.B., S.A. Rounds, M.L. Deas, J.R. Asbill, R.E. Wellman, M.A. Stewart, M.W. Johnston, I.E. Sogutlugil. 2011. Modeling hydrodynamics, water temperature, and water quality in the Klamath River upstream of Keno Dam, Oregon, 2006–09. U.S. Geological Survey Scientific Investigations Report 2011-5105.

Swezey, S.L. and R. F. Heizer. 1977. "Ritual Management of Salmonid Fish Resources in California." Journal of California Anthropology 4(1).

US Environmental Protection Agency (USEPA). 1986. Ambient water quality criteria for dissolved oxygen. EPA 440/5-86-003. USEPA, Office of Water Regulations and Standards Division, Washington D.C.

USEPA. 2010. eGRID Home Page. Accessed on: November 29, 2010. Available at: http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html

U.S. Geological Survey (USGS) 2010. Ground-water Hydrology of the Upper Klamath Basin, Oregon and California. Scientific Investigations Report 2007-5050 Version 1.1, April 2010.

USGS 2011. Daily-value flows at Klamath River Below Iron Gate Dam, CA (11516530). Available at: http://waterdata.usgs.gov/ca/nwis/dv/

U.S. Global Change Research Program (USGCR). 2009. Global climate change impacts in the United States. Karl TR, Melillo JM, and Peterson TC, editors. Cambridge University Press, New York, New York.

U.S. Fish and Wildlife Service (USFWS). 1986. Klamath River Fisheries Investigation Program. Annual Report 1985. July 1986. Accessed Online August 17, 2011. Available at:

http://www.fws.gov/arcata/reports/annual%20reports/AFWO_1986_annual_report.pdf.

USFWS. 2002. Bull trout (Salvelinus confluentus) draft recovery plan. USFWS, Region 1, Portland, Oregon

USFWS. 2003. Klamath River fish die-off - September 2002 - Causative factors of mortality. USFWS, Arcata, California.

USFWS. 2004. Endangered and threatened wildlife and plants; 90-day finding on a petition to list three species of lampreys as threatened or endangered. Federal Register 69: 77158-77167.

USFWS. 2006. Contribution of Klamath reservoirs to federally listed sucker populations and habitat. USFWS, Yreka Fish and Wildlife Office, Yreka, California.

USFWS. 2008. Biological/conference opinion regarding the effects of the U.S. Bureau of Reclamation's proposed 10-year Operation Plan (April 1, 2008–March 31, 2018) for the Klamath Project and its effects on the endangered Lost River and shortnose suckers. USFWS, Klamath Falls Fish and Wildlife Office, Klamath Falls, Oregon, and Yreka Fish and Wildlife Office, Yreka, California.

USFWS. 2011. Reservoir Recreation Economics Technical Report for the Secretarial Determination on Whether to Remove Four Damns on the Klamath River in California and Oregon. August 2011. Accessed on November 2, 2011. Available

http://klamathrestoration.gov/sites/klamathrestoration.gov/files/EIS-EIR-Draft/Econ-Reports/Reservoir%20Recreation_8-30(accessible).pdf

VanderKooi S.P., S.M. Burdick, K.R. Echols, C.A. Ottinger, B.H. Rosen, and T.M. Wood. 2010. Algal toxins in upper Klamath Lake, Oregon: Linking water quality to juvenile sucker health. U.S. Geological Survey Fact Sheet 2009-3111. U.S. Geological Survey, Western Fisheries Research Center, Seattle, Washington. http://pubs.usgs.gov/fs/2009/3111/pdf/fs20093111.pdf

Varyu D.R., B.P. Greimann. 2010. Sediment mobilization analysis at Little Bogus Creek and Beaver Creek for Klamath Dam Removal Studies, Memo to Rhea Graham, Reclamation Program Manager, Klamath River Dams Project Office, USDI Bureau of Reclamation, Sacramento, California.

VisitUSA.com 2010. California Lakes, Juniata Lake. Available at: http://www.visitusa.com/california/lakes/juanitalake.htm

Walker W.W. 2001. Development of a phosphorus TMDL for Upper Klamath Lake, Oregon. Prepared for Oregon Department of Environmental Quality, Bend, Oregon.

Water Quality Sub-team (WQST). 2011. Assessment of Long Term Water Quality Changes for the Klamath River Basin Resulting from KHSA, KBRA, and TMDL and

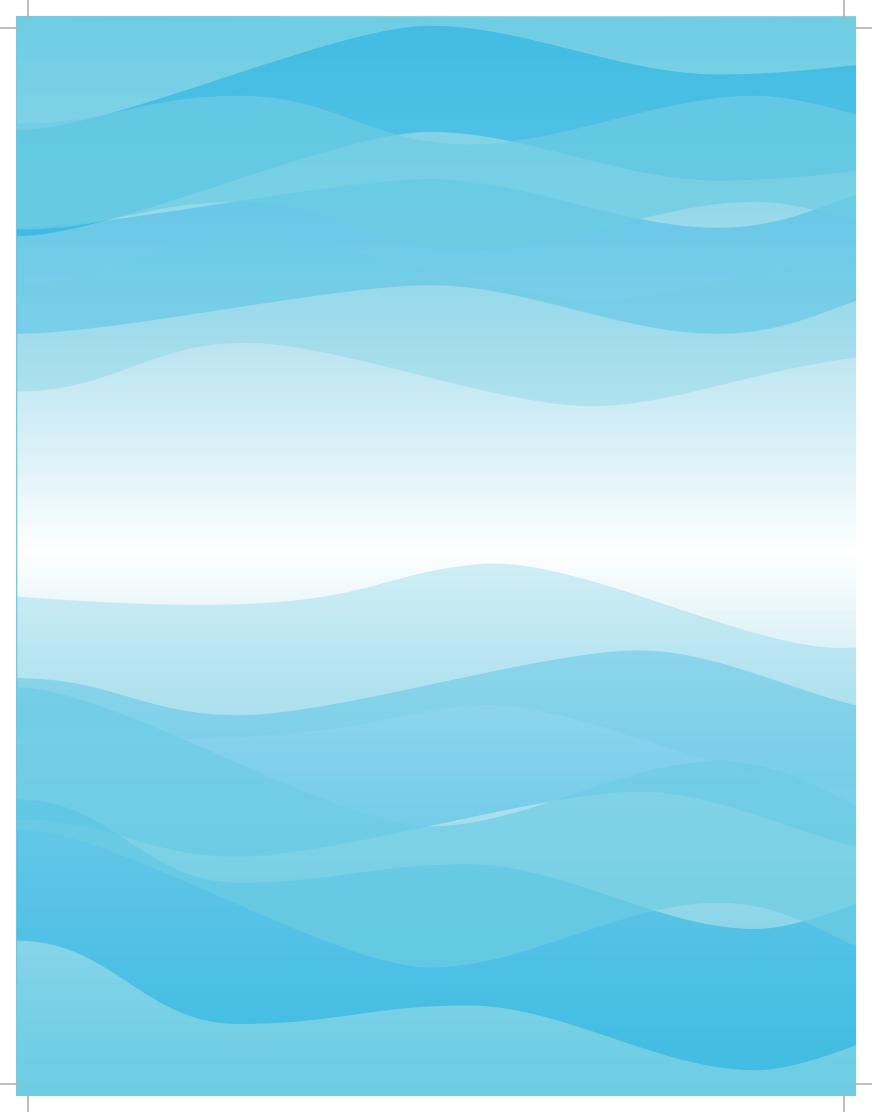
NPS Reduction Programs: Klamath Secretarial Determination Regarding Potential Removal of the Lower Four Dams on the Klamath River. 21 p + Appendixes. Available at: http://klamathrestoration.gov/sites/klamathrestoration.gov/files/Final%20Klamath%20WQ%20Changes%20Analysis%20Approach_08_18_2011.pdf

Warburton, Austen D. 1966. Indian lore of the north California coast. Santa Clara, Calif., [Pacific Pueblo Press] 1966

Waterman, T.T. 1920. Yurok Geography. University of California Publications in American Archaeology and Ethnography Volume 16, Number 5, pp. 177-314.

Western Regional Climate Center. 2011. Climatological Data Summaries. Accessed Online August 17, 2011. Available at: http://www.wrcc.dri.edu/Climsum.html.

White House Memorandum. 2009. White House Office of the Press Secretary, Presidential Memoranda. 2009. Memorandum for the Heads of Executive Departments and Agencies on Scientific Integrity. March 9, 2009.


Williams T.H, E.P. Bjorkstedt, W.G. Duffy, D. Hillemeier, G. Kautsky, T.E. Lisle, M. McCain, M. Rode, R.G. Szerlong, R.S. Schick, M.N. Goslin, and A. Agrawal. 2006. Historical population structure of coho salmon in the Southern Oregon/Northern California Coasts evolutionarily significant unit. NOAA Technical Memorandum NOAA-TM-NOAA Fisheries-SWFSC-390. National Marine Fisheries Service, Southwest Fisheries Science Center, Santa Cruz, California.

Williams T.H, B.C. Spence, W. Duffy, D. Hillemeier, G. Kautsky, T.E. Lisle, M. McCain, T.E. Nickelson, E. Mora, T. Pearson. 2008. Framework for Assessing Viability of Threatened Coho Salmon in the Southern Oregon/Northern California Coast Evolutionarily Significant Unit. NOAA Technical Memorandum. NOAA-TM-NMFS-SWFSC-432. National Marine Fisheries Service, Southwest Fisheries Science Center, Santa Cruz, California.

Wood TM, Fuhrer GJ, Morace JL. 1996. Relation between selected water-quality variables and lake level in Upper Klamath and Agency lakes, Oregon. Water-Resources Investigations Report 96-4079. U. S. Geological Survey, Portland, Oregon.

World Health Organization (WHO). 1999. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, London, England.

This page intentionally left blank.

